Generalized holomorphic analytic torsion
Journal of the European Mathematical Society, Tome 16 (2014) no. 3, pp. 463-535
Cet article a éte moissonné depuis la source EMS Press
In this paper we extend the holomorphic analytic torsion classes of Bismut and Köhler to arbitrary projective morphisms between smooth algebraic complex varieties. To this end, we propose an axiomatic definition and give a classification of the theories of generalized holomorphic analytic torsion classes for projective morphisms. The extension of the holomorphic analytic torsion classes of Bismut and K ̈ohler is obtained as the theory of generalized analytic torsion classes associated to –R=2, R being the R-genus. As an application of the axiomatic characterization, we give new simpler proofs of known properties of holomorpic analytic torsion classes, we give a characterization of the R-genus, and we construct a direct image of hermitian structures for projective morphisms.
Classification :
14-XX, 00-XX, 32-XX
Keywords: Grothendieck–Riemann–Roch theorem, holomorphic analytic torsion, Quillen metric, Grothendieck duality
Keywords: Grothendieck–Riemann–Roch theorem, holomorphic analytic torsion, Quillen metric, Grothendieck duality
@article{JEMS_2014_16_3_a1,
author = {Jos\'e Ignacio Burgos Gil and Gerard Freixas i Montplet and R\u{a}zvan Li\c{t}canu},
title = {Generalized holomorphic analytic torsion},
journal = {Journal of the European Mathematical Society},
pages = {463--535},
year = {2014},
volume = {16},
number = {3},
doi = {10.4171/jems/438},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/438/}
}
TY - JOUR AU - José Ignacio Burgos Gil AU - Gerard Freixas i Montplet AU - Răzvan Liţcanu TI - Generalized holomorphic analytic torsion JO - Journal of the European Mathematical Society PY - 2014 SP - 463 EP - 535 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/438/ DO - 10.4171/jems/438 ID - JEMS_2014_16_3_a1 ER -
%0 Journal Article %A José Ignacio Burgos Gil %A Gerard Freixas i Montplet %A Răzvan Liţcanu %T Generalized holomorphic analytic torsion %J Journal of the European Mathematical Society %D 2014 %P 463-535 %V 16 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/438/ %R 10.4171/jems/438 %F JEMS_2014_16_3_a1
José Ignacio Burgos Gil; Gerard Freixas i Montplet; Răzvan Liţcanu. Generalized holomorphic analytic torsion. Journal of the European Mathematical Society, Tome 16 (2014) no. 3, pp. 463-535. doi: 10.4171/jems/438
Cité par Sources :