Sharp bounds for the intersection of nodal lines with certain curves
Journal of the European Mathematical Society, Tome 16 (2014) no. 2, pp. 273-288.

Voir la notice de l'article provenant de la source EMS Press

Let Y be a hyperbolic surface and let φ be a Laplacian eigenfunction having eigenvalue −1/4−τ2 with τ>0. Let N(φ) be the set of nodal lines of φ. For a fixed analytic curve γ of finite length, we study the number of intersections between N(φ) and γ in terms of τ. When Y is compact and γ a geodesic circle, or when Y has finite volume and γ is a closed horocycle, we prove that γ is “good” in the sense of [TZ]. As a result, we obtain that the number of intersections between N(φ) and γ is O(τ). This bound is sharp.
DOI : 10.4171/jems/433
Classification : 53-XX, 32-XX, 33-XX, 78-XX
Keywords: Nodal domain, hyperbolic surfaces, eigenfunctions
@article{JEMS_2014_16_2_a2,
     author = {Junehyuk Jung},
     title = {Sharp bounds for the intersection of nodal lines with certain curves},
     journal = {Journal of the European Mathematical Society},
     pages = {273--288},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2014},
     doi = {10.4171/jems/433},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/433/}
}
TY  - JOUR
AU  - Junehyuk Jung
TI  - Sharp bounds for the intersection of nodal lines with certain curves
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 273
EP  - 288
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/433/
DO  - 10.4171/jems/433
ID  - JEMS_2014_16_2_a2
ER  - 
%0 Journal Article
%A Junehyuk Jung
%T Sharp bounds for the intersection of nodal lines with certain curves
%J Journal of the European Mathematical Society
%D 2014
%P 273-288
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/433/
%R 10.4171/jems/433
%F JEMS_2014_16_2_a2
Junehyuk Jung. Sharp bounds for the intersection of nodal lines with certain curves. Journal of the European Mathematical Society, Tome 16 (2014) no. 2, pp. 273-288. doi : 10.4171/jems/433. http://geodesic.mathdoc.fr/articles/10.4171/jems/433/

Cité par Sources :