Homology computations for complex braid groups
Journal of the European Mathematical Society, Tome 16 (2014) no. 1, pp. 103-164.

Voir la notice de l'article provenant de la source EMS Press

Complex braid groups are the natural generalizations of braid groups associated to arbitrary (finite) complex reflection groups. We investigate several methods for computing the homology of these groups. In particular, we get the Poincaré polynomial with coefficients in a finite field for one large series of such groups, and compute the second integral cohomology group for all of them. As a consequence we get non-isomorphism results for these groups.
DOI : 10.4171/jems/429
Classification : 20-XX, 00-XX
Keywords: Complex reflection groups, braid groups, group homology, Salvetti complex, Garside groups, Schur multiplier
@article{JEMS_2014_16_1_a3,
     author = {Filippo Callegaro and Ivan Marin},
     title = {Homology computations for complex braid groups},
     journal = {Journal of the European Mathematical Society},
     pages = {103--164},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.4171/jems/429},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/429/}
}
TY  - JOUR
AU  - Filippo Callegaro
AU  - Ivan Marin
TI  - Homology computations for complex braid groups
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 103
EP  - 164
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/429/
DO  - 10.4171/jems/429
ID  - JEMS_2014_16_1_a3
ER  - 
%0 Journal Article
%A Filippo Callegaro
%A Ivan Marin
%T Homology computations for complex braid groups
%J Journal of the European Mathematical Society
%D 2014
%P 103-164
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/429/
%R 10.4171/jems/429
%F JEMS_2014_16_1_a3
Filippo Callegaro; Ivan Marin. Homology computations for complex braid groups. Journal of the European Mathematical Society, Tome 16 (2014) no. 1, pp. 103-164. doi : 10.4171/jems/429. http://geodesic.mathdoc.fr/articles/10.4171/jems/429/

Cité par Sources :