Homology computations for complex braid groups
Journal of the European Mathematical Society, Tome 16 (2014) no. 1, pp. 103-164
Voir la notice de l'article provenant de la source EMS Press
Complex braid groups are the natural generalizations of braid groups associated to arbitrary (finite) complex reflection groups. We investigate several methods for computing the homology of these groups. In particular, we get the Poincaré polynomial with coefficients in a finite field for one large series of such groups, and compute the second integral cohomology group for all of them. As a consequence we get non-isomorphism results for these groups.
Classification :
20-XX, 00-XX
Keywords: Complex reflection groups, braid groups, group homology, Salvetti complex, Garside groups, Schur multiplier
Keywords: Complex reflection groups, braid groups, group homology, Salvetti complex, Garside groups, Schur multiplier
@article{JEMS_2014_16_1_a3,
author = {Filippo Callegaro and Ivan Marin},
title = {Homology computations for complex braid groups},
journal = {Journal of the European Mathematical Society},
pages = {103--164},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2014},
doi = {10.4171/jems/429},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/429/}
}
TY - JOUR AU - Filippo Callegaro AU - Ivan Marin TI - Homology computations for complex braid groups JO - Journal of the European Mathematical Society PY - 2014 SP - 103 EP - 164 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/429/ DO - 10.4171/jems/429 ID - JEMS_2014_16_1_a3 ER -
Filippo Callegaro; Ivan Marin. Homology computations for complex braid groups. Journal of the European Mathematical Society, Tome 16 (2014) no. 1, pp. 103-164. doi: 10.4171/jems/429
Cité par Sources :