Perron-Frobenius operators and the Klein-Gordon equation
Journal of the European Mathematical Society, Tome 16 (2014) no. 1, pp. 31-66
Cet article a éte moissonné depuis la source EMS Press
For a smooth curve Γ and a set Λ in the plane R2, let AC(Γ;Λ) be the space of finite Borel measures in the plane supported on Γ, absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ. Following [12], we say that (Γ,Λ) is a Heisenberg uniqueness pair if AC(Γ;Λ)={0}. In the context of a hyperbola Γ, the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein–Gordon equation. In this work, we mainly address the issue of finding the dimension of AC(Γ;Λ) when it is non-zero. We will fix the curve Γ to be the hyperbola x1x2=1, and the set Λ=Λα,β to be the lattice-cross
Classification :
42-XX, 11-XX, 31-XX, 58-XX
Keywords: Trigonometric system, inversion, Perron–Frobenius operator, Koopman operator, invariant measure, Klein–Gordon equation, ergodic theory
Keywords: Trigonometric system, inversion, Perron–Frobenius operator, Koopman operator, invariant measure, Klein–Gordon equation, ergodic theory
@article{JEMS_2014_16_1_a1,
author = {Francisco Canto-Mart{\'\i}n and Haakan Hedenmalm and Alfonso Montes-Rodr{\'\i}guez},
title = {Perron-Frobenius operators and the {Klein-Gordon} equation},
journal = {Journal of the European Mathematical Society},
pages = {31--66},
year = {2014},
volume = {16},
number = {1},
doi = {10.4171/jems/427},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/427/}
}
TY - JOUR AU - Francisco Canto-Martín AU - Haakan Hedenmalm AU - Alfonso Montes-Rodríguez TI - Perron-Frobenius operators and the Klein-Gordon equation JO - Journal of the European Mathematical Society PY - 2014 SP - 31 EP - 66 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/427/ DO - 10.4171/jems/427 ID - JEMS_2014_16_1_a1 ER -
%0 Journal Article %A Francisco Canto-Martín %A Haakan Hedenmalm %A Alfonso Montes-Rodríguez %T Perron-Frobenius operators and the Klein-Gordon equation %J Journal of the European Mathematical Society %D 2014 %P 31-66 %V 16 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/427/ %R 10.4171/jems/427 %F JEMS_2014_16_1_a1
Francisco Canto-Martín; Haakan Hedenmalm; Alfonso Montes-Rodríguez. Perron-Frobenius operators and the Klein-Gordon equation. Journal of the European Mathematical Society, Tome 16 (2014) no. 1, pp. 31-66. doi: 10.4171/jems/427
Cité par Sources :