Tensor complexes: multilinear free resolutions constructed from higher tensors
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2257-2295.

Voir la notice de l'article provenant de la source EMS Press

The most fundamental complexes of free modules over a commutative ring are the Koszul complex, which is constructed from a vector (i.e., a 1-tensor), and the Eagon–Northcott and Buchsbaum–Rim complexes, which are constructed from a matrix (i.e., a 2-tensor). The subject of this paper is a multilinear analogue of these complexes, which we construct from an arbitrary higher tensor. Our construction provides detailed new examples of minimal free resolutions, as well as a unifying view on a wide variety of complexes including: the Eagon–Northcott, Buchsbaum–Rim and similar complexes, the Eisenbud–Schreyer pure resolutions, and the complexes used by Gelfand–Kapranov–Zelevinsky and Weyman to compute hyperdeterminants. In addition, we provide applications to the study of pure resolutions and Boij–Söderberg theory, including the construction of infinitely many new families of pure resolutions, and the first explicit description of the differentials of the Eisenbud–Schreyer pure resolutions.
DOI : 10.4171/jems/421
Classification : 13-XX, 14-XX, 15-XX
Keywords: free resolutions, tensors, hyperdeterminant
@article{JEMS_2013_15_6_a10,
     author = {Christine Berkesch Zamaere and Daniel Erman and Manoj Kummini and Steven V Sam},
     title = {Tensor complexes: multilinear free resolutions constructed from higher tensors},
     journal = {Journal of the European Mathematical Society},
     pages = {2257--2295},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2013},
     doi = {10.4171/jems/421},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/421/}
}
TY  - JOUR
AU  - Christine Berkesch Zamaere
AU  - Daniel Erman
AU  - Manoj Kummini
AU  - Steven V Sam
TI  - Tensor complexes: multilinear free resolutions constructed from higher tensors
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 2257
EP  - 2295
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/421/
DO  - 10.4171/jems/421
ID  - JEMS_2013_15_6_a10
ER  - 
%0 Journal Article
%A Christine Berkesch Zamaere
%A Daniel Erman
%A Manoj Kummini
%A Steven V Sam
%T Tensor complexes: multilinear free resolutions constructed from higher tensors
%J Journal of the European Mathematical Society
%D 2013
%P 2257-2295
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/421/
%R 10.4171/jems/421
%F JEMS_2013_15_6_a10
Christine Berkesch Zamaere; Daniel Erman; Manoj Kummini; Steven V Sam. Tensor complexes: multilinear free resolutions constructed from higher tensors. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2257-2295. doi : 10.4171/jems/421. http://geodesic.mathdoc.fr/articles/10.4171/jems/421/

Cité par Sources :