Tensor complexes: multilinear free resolutions constructed from higher tensors
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2257-2295
Cet article a éte moissonné depuis la source EMS Press
The most fundamental complexes of free modules over a commutative ring are the Koszul complex, which is constructed from a vector (i.e., a 1-tensor), and the Eagon–Northcott and Buchsbaum–Rim complexes, which are constructed from a matrix (i.e., a 2-tensor). The subject of this paper is a multilinear analogue of these complexes, which we construct from an arbitrary higher tensor. Our construction provides detailed new examples of minimal free resolutions, as well as a unifying view on a wide variety of complexes including: the Eagon–Northcott, Buchsbaum–Rim and similar complexes, the Eisenbud–Schreyer pure resolutions, and the complexes used by Gelfand–Kapranov–Zelevinsky and Weyman to compute hyperdeterminants. In addition, we provide applications to the study of pure resolutions and Boij–Söderberg theory, including the construction of infinitely many new families of pure resolutions, and the first explicit description of the differentials of the Eisenbud–Schreyer pure resolutions.
Classification :
13-XX, 14-XX, 15-XX
Keywords: free resolutions, tensors, hyperdeterminant
Keywords: free resolutions, tensors, hyperdeterminant
@article{JEMS_2013_15_6_a10,
author = {Christine Berkesch Zamaere and Daniel Erman and Manoj Kummini and Steven V Sam},
title = {Tensor complexes: multilinear free resolutions constructed from higher tensors},
journal = {Journal of the European Mathematical Society},
pages = {2257--2295},
year = {2013},
volume = {15},
number = {6},
doi = {10.4171/jems/421},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/421/}
}
TY - JOUR AU - Christine Berkesch Zamaere AU - Daniel Erman AU - Manoj Kummini AU - Steven V Sam TI - Tensor complexes: multilinear free resolutions constructed from higher tensors JO - Journal of the European Mathematical Society PY - 2013 SP - 2257 EP - 2295 VL - 15 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/421/ DO - 10.4171/jems/421 ID - JEMS_2013_15_6_a10 ER -
%0 Journal Article %A Christine Berkesch Zamaere %A Daniel Erman %A Manoj Kummini %A Steven V Sam %T Tensor complexes: multilinear free resolutions constructed from higher tensors %J Journal of the European Mathematical Society %D 2013 %P 2257-2295 %V 15 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/421/ %R 10.4171/jems/421 %F JEMS_2013_15_6_a10
Christine Berkesch Zamaere; Daniel Erman; Manoj Kummini; Steven V Sam. Tensor complexes: multilinear free resolutions constructed from higher tensors. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2257-2295. doi: 10.4171/jems/421
Cité par Sources :