On the dimension of $p$-harmonic measure in space
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2197-2256
Voir la notice de l'article provenant de la source EMS Press
Let Ω⊂Rn, n≥3, and let p, 1∞, p=2, be given. In this paper we study the dimension of p-harmonic measures that arise from non-negative solutions to the p-Laplace equation, vanishing on a portion of ∂Ω, in the setting of δ-Reifenberg flat domains. We prove, for p≥n, that there exists δ~=δ~(p,n)>0 small such that if Ω is a δ-Reifenberg flat domain with δ~, then p-harmonic measure is concentrated on a set of σ-finite Hn−1-measure. We prove, for p≥n, that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p-harmonic measure is always less than n−1. We also prove that if 2, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is less than n−1, while if 12, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is larger than n−1. Furthermore, perturbing off the case p=2, we derive estimates when p is near 2 for the Hausdorff dimension of p-harmonic measure.
Classification :
35-XX
Keywords: p-harmonic function, p-harmonic measure, Hausdorff dimension, Reifenberg flat domain, Wolff snowflake
Keywords: p-harmonic function, p-harmonic measure, Hausdorff dimension, Reifenberg flat domain, Wolff snowflake
@article{JEMS_2013_15_6_a9,
author = {John L. Lewis and Kaj Nystr\"om and Andrew Vogel},
title = {On the dimension of $p$-harmonic measure in space},
journal = {Journal of the European Mathematical Society},
pages = {2197--2256},
publisher = {mathdoc},
volume = {15},
number = {6},
year = {2013},
doi = {10.4171/jems/420},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/420/}
}
TY - JOUR AU - John L. Lewis AU - Kaj Nyström AU - Andrew Vogel TI - On the dimension of $p$-harmonic measure in space JO - Journal of the European Mathematical Society PY - 2013 SP - 2197 EP - 2256 VL - 15 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/420/ DO - 10.4171/jems/420 ID - JEMS_2013_15_6_a9 ER -
%0 Journal Article %A John L. Lewis %A Kaj Nyström %A Andrew Vogel %T On the dimension of $p$-harmonic measure in space %J Journal of the European Mathematical Society %D 2013 %P 2197-2256 %V 15 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/420/ %R 10.4171/jems/420 %F JEMS_2013_15_6_a9
John L. Lewis; Kaj Nyström; Andrew Vogel. On the dimension of $p$-harmonic measure in space. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2197-2256. doi: 10.4171/jems/420
Cité par Sources :