On the dimension of $p$-harmonic measure in space
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2197-2256.

Voir la notice de l'article provenant de la source EMS Press

Let Ω⊂Rn, n≥3, and let p, 1∞, p=2, be given. In this paper we study the dimension of p-harmonic measures that arise from non-negative solutions to the p-Laplace equation, vanishing on a portion of ∂Ω, in the setting of δ-Reifenberg flat domains. We prove, for p≥n, that there exists δ~=δ~(p,n)>0 small such that if Ω is a δ-Reifenberg flat domain with δ~, then p-harmonic measure is concentrated on a set of σ-finite Hn−1-measure. We prove, for p≥n, that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p-harmonic measure is always less than n−1. We also prove that if 2, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is less than n−1, while if 12, then there exist Wolff snowflakes such that the Hausdorff dimension of p-harmonic measure is larger than n−1. Furthermore, perturbing off the case p=2, we derive estimates when p is near 2 for the Hausdorff dimension of p-harmonic measure.
DOI : 10.4171/jems/420
Classification : 35-XX
Keywords: p-harmonic function, p-harmonic measure, Hausdorff dimension, Reifenberg flat domain, Wolff snowflake
@article{JEMS_2013_15_6_a9,
     author = {John L. Lewis and Kaj Nystr\"om and Andrew Vogel},
     title = {On the dimension of $p$-harmonic measure in space},
     journal = {Journal of the European Mathematical Society},
     pages = {2197--2256},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2013},
     doi = {10.4171/jems/420},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/420/}
}
TY  - JOUR
AU  - John L. Lewis
AU  - Kaj Nyström
AU  - Andrew Vogel
TI  - On the dimension of $p$-harmonic measure in space
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 2197
EP  - 2256
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/420/
DO  - 10.4171/jems/420
ID  - JEMS_2013_15_6_a9
ER  - 
%0 Journal Article
%A John L. Lewis
%A Kaj Nyström
%A Andrew Vogel
%T On the dimension of $p$-harmonic measure in space
%J Journal of the European Mathematical Society
%D 2013
%P 2197-2256
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/420/
%R 10.4171/jems/420
%F JEMS_2013_15_6_a9
John L. Lewis; Kaj Nyström; Andrew Vogel. On the dimension of $p$-harmonic measure in space. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2197-2256. doi : 10.4171/jems/420. http://geodesic.mathdoc.fr/articles/10.4171/jems/420/

Cité par Sources :