Enumeration of real conics and maximal configurations
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2139-2164.

Voir la notice de l'article provenant de la source EMS Press

We use floor decompositions of tropical curves to prove that any enumerative problem concerning conics passing through projective-linear subspaces in RPn is maximal. That is, there exist generic configurations of real linear spaces such that all complex conics passing through these constraints are actually real.
DOI : 10.4171/jems/418
Classification : 14-XX
Keywords: tropical geometry, floor decomposition, real enumerative geometry, Gromov-Witten invariants
@article{JEMS_2013_15_6_a7,
     author = {Erwan Brugall\'e and Nicolas Puignau},
     title = {Enumeration of real conics and maximal configurations},
     journal = {Journal of the European Mathematical Society},
     pages = {2139--2164},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2013},
     doi = {10.4171/jems/418},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/418/}
}
TY  - JOUR
AU  - Erwan Brugallé
AU  - Nicolas Puignau
TI  - Enumeration of real conics and maximal configurations
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 2139
EP  - 2164
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/418/
DO  - 10.4171/jems/418
ID  - JEMS_2013_15_6_a7
ER  - 
%0 Journal Article
%A Erwan Brugallé
%A Nicolas Puignau
%T Enumeration of real conics and maximal configurations
%J Journal of the European Mathematical Society
%D 2013
%P 2139-2164
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/418/
%R 10.4171/jems/418
%F JEMS_2013_15_6_a7
Erwan Brugallé; Nicolas Puignau. Enumeration of real conics and maximal configurations. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2139-2164. doi : 10.4171/jems/418. http://geodesic.mathdoc.fr/articles/10.4171/jems/418/

Cité par Sources :