Enumeration of real conics and maximal configurations
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2139-2164
Cet article a éte moissonné depuis la source EMS Press
We use floor decompositions of tropical curves to prove that any enumerative problem concerning conics passing through projective-linear subspaces in RPn is maximal. That is, there exist generic configurations of real linear spaces such that all complex conics passing through these constraints are actually real.
Classification :
14-XX
Keywords: tropical geometry, floor decomposition, real enumerative geometry, Gromov-Witten invariants
Keywords: tropical geometry, floor decomposition, real enumerative geometry, Gromov-Witten invariants
@article{JEMS_2013_15_6_a7,
author = {Erwan Brugall\'e and Nicolas Puignau},
title = {Enumeration of real conics and maximal configurations},
journal = {Journal of the European Mathematical Society},
pages = {2139--2164},
year = {2013},
volume = {15},
number = {6},
doi = {10.4171/jems/418},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/418/}
}
TY - JOUR AU - Erwan Brugallé AU - Nicolas Puignau TI - Enumeration of real conics and maximal configurations JO - Journal of the European Mathematical Society PY - 2013 SP - 2139 EP - 2164 VL - 15 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/418/ DO - 10.4171/jems/418 ID - JEMS_2013_15_6_a7 ER -
Erwan Brugallé; Nicolas Puignau. Enumeration of real conics and maximal configurations. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2139-2164. doi: 10.4171/jems/418
Cité par Sources :