Modular representations of finite groups with trivial restriction to Sylow subgroups
Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2061-2079.

Voir la notice de l'article provenant de la source EMS Press

Let k be a field of characteristic p. Let G be a finite group of order divisible by p and P a p-Sylow subgroup of G. We describe the kernel of the restriction homomorphism T(G)→T(P), for T(−) the group of endotrivial representations. Our description involves functions G→k× that we call weak P-homomorphisms. These are generalizations to possibly non-normal P≤G of the classical homomorphisms G/P→k× appearing in the normal case.
DOI : 10.4171/jems/414
Classification : 20-XX
Keywords: endotrivial module, trivial restriction to Sylow, weak homomorphism
@article{JEMS_2013_15_6_a3,
     author = {Paul Balmer},
     title = {Modular representations of finite groups with trivial restriction to {Sylow} subgroups},
     journal = {Journal of the European Mathematical Society},
     pages = {2061--2079},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2013},
     doi = {10.4171/jems/414},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/414/}
}
TY  - JOUR
AU  - Paul Balmer
TI  - Modular representations of finite groups with trivial restriction to Sylow subgroups
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 2061
EP  - 2079
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/414/
DO  - 10.4171/jems/414
ID  - JEMS_2013_15_6_a3
ER  - 
%0 Journal Article
%A Paul Balmer
%T Modular representations of finite groups with trivial restriction to Sylow subgroups
%J Journal of the European Mathematical Society
%D 2013
%P 2061-2079
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/414/
%R 10.4171/jems/414
%F JEMS_2013_15_6_a3
Paul Balmer. Modular representations of finite groups with trivial restriction to Sylow subgroups. Journal of the European Mathematical Society, Tome 15 (2013) no. 6, pp. 2061-2079. doi : 10.4171/jems/414. http://geodesic.mathdoc.fr/articles/10.4171/jems/414/

Cité par Sources :