Estimates of eigenvalues and eigenfunctions in periodic homogenization
Journal of the European Mathematical Society, Tome 15 (2013) no. 5, pp. 1901-1925
Cet article a éte moissonné depuis la source EMS Press
For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an O(ε) estimate in H1 for solutions with Dirichlet condition.
Classification :
35-XX, 34-XX, 00-XX
Keywords: Homogenization, eigenvalue, eigenfunction
Keywords: Homogenization, eigenvalue, eigenfunction
@article{JEMS_2013_15_5_a10,
author = {Carlos E. Kenig and Fanghua Lin and Zhongwei Shen},
title = {Estimates of eigenvalues and eigenfunctions in periodic homogenization},
journal = {Journal of the European Mathematical Society},
pages = {1901--1925},
year = {2013},
volume = {15},
number = {5},
doi = {10.4171/jems/408},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/408/}
}
TY - JOUR AU - Carlos E. Kenig AU - Fanghua Lin AU - Zhongwei Shen TI - Estimates of eigenvalues and eigenfunctions in periodic homogenization JO - Journal of the European Mathematical Society PY - 2013 SP - 1901 EP - 1925 VL - 15 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/408/ DO - 10.4171/jems/408 ID - JEMS_2013_15_5_a10 ER -
%0 Journal Article %A Carlos E. Kenig %A Fanghua Lin %A Zhongwei Shen %T Estimates of eigenvalues and eigenfunctions in periodic homogenization %J Journal of the European Mathematical Society %D 2013 %P 1901-1925 %V 15 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/408/ %R 10.4171/jems/408 %F JEMS_2013_15_5_a10
Carlos E. Kenig; Fanghua Lin; Zhongwei Shen. Estimates of eigenvalues and eigenfunctions in periodic homogenization. Journal of the European Mathematical Society, Tome 15 (2013) no. 5, pp. 1901-1925. doi: 10.4171/jems/408
Cité par Sources :