Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential
Journal of the European Mathematical Society, Tome 15 (2013) no. 5, pp. 1859-1899.

Voir la notice de l'article provenant de la source EMS Press

We consider a singularly perturbed elliptic equation
DOI : 10.4171/jems/407
Classification : 35-XX, 00-XX
Keywords: Variational method, critical points, nonlInear Schrödinger equations, Berestycki–Lions conditions, gradient flows, linking
@article{JEMS_2013_15_5_a9,
     author = {Jaeyoung Byeon and Kazunaga Tanaka},
     title = {Semi-classical standing waves for nonlinear {Schr\"odinger} equations at structurally stable critical points of the potential},
     journal = {Journal of the European Mathematical Society},
     pages = {1859--1899},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2013},
     doi = {10.4171/jems/407},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/407/}
}
TY  - JOUR
AU  - Jaeyoung Byeon
AU  - Kazunaga Tanaka
TI  - Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 1859
EP  - 1899
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/407/
DO  - 10.4171/jems/407
ID  - JEMS_2013_15_5_a9
ER  - 
%0 Journal Article
%A Jaeyoung Byeon
%A Kazunaga Tanaka
%T Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential
%J Journal of the European Mathematical Society
%D 2013
%P 1859-1899
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/407/
%R 10.4171/jems/407
%F JEMS_2013_15_5_a9
Jaeyoung Byeon; Kazunaga Tanaka. Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. Journal of the European Mathematical Society, Tome 15 (2013) no. 5, pp. 1859-1899. doi : 10.4171/jems/407. http://geodesic.mathdoc.fr/articles/10.4171/jems/407/

Cité par Sources :