The Markovian hyperbolic triangulation
Journal of the European Mathematical Society, Tome 15 (2013) no. 4, pp. 1309-1341.

Voir la notice de l'article provenant de la source EMS Press

We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.
DOI : 10.4171/jems/393
Classification : 60-XX, 30-XX, 00-XX
@article{JEMS_2013_15_4_a5,
     author = {Nicolas Curien and Wendelin Werner},
     title = {The {Markovian} hyperbolic triangulation},
     journal = {Journal of the European Mathematical Society},
     pages = {1309--1341},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2013},
     doi = {10.4171/jems/393},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/393/}
}
TY  - JOUR
AU  - Nicolas Curien
AU  - Wendelin Werner
TI  - The Markovian hyperbolic triangulation
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 1309
EP  - 1341
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/393/
DO  - 10.4171/jems/393
ID  - JEMS_2013_15_4_a5
ER  - 
%0 Journal Article
%A Nicolas Curien
%A Wendelin Werner
%T The Markovian hyperbolic triangulation
%J Journal of the European Mathematical Society
%D 2013
%P 1309-1341
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/393/
%R 10.4171/jems/393
%F JEMS_2013_15_4_a5
Nicolas Curien; Wendelin Werner. The Markovian hyperbolic triangulation. Journal of the European Mathematical Society, Tome 15 (2013) no. 4, pp. 1309-1341. doi : 10.4171/jems/393. http://geodesic.mathdoc.fr/articles/10.4171/jems/393/

Cité par Sources :