The Markovian hyperbolic triangulation
Journal of the European Mathematical Society, Tome 15 (2013) no. 4, pp. 1309-1341
Voir la notice de l'article provenant de la source EMS Press
We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.
@article{JEMS_2013_15_4_a5,
author = {Nicolas Curien and Wendelin Werner},
title = {The {Markovian} hyperbolic triangulation},
journal = {Journal of the European Mathematical Society},
pages = {1309--1341},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2013},
doi = {10.4171/jems/393},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/393/}
}
TY - JOUR AU - Nicolas Curien AU - Wendelin Werner TI - The Markovian hyperbolic triangulation JO - Journal of the European Mathematical Society PY - 2013 SP - 1309 EP - 1341 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/393/ DO - 10.4171/jems/393 ID - JEMS_2013_15_4_a5 ER -
Nicolas Curien; Wendelin Werner. The Markovian hyperbolic triangulation. Journal of the European Mathematical Society, Tome 15 (2013) no. 4, pp. 1309-1341. doi: 10.4171/jems/393
Cité par Sources :