Best constants for the isoperimetric inequality in quantitative form
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 1101-1129.

Voir la notice de l'article provenant de la source EMS Press

We prove some results in the context of isoperimetric inequalities with quantitative terms. In the 2-dimensional case, our main contribution is a method for determining the optimal coefficients c1​,...,cm​ in the inequality δP(E)≥∑k=1m​ck​α(E)k+o(α(E)m), valid for each Borel set E with positive and finite area, with δP(E) and α(E) being, respectively, the \textit{isoperimetric deficit} and the \textit{Fraenkel asymmetry} of E. In n dimensions, besides proving existence and regularity properties of minimizers for a wide class of \textit{quantitative isoperimetric quotients} including the lower semicontinuous extension of α(E)2δP(E)​, we describe the general technique upon which our 2-dimensional result is based. This technique, called Iterative Selection Principle, extends the one introduced in [12].
DOI : 10.4171/jems/387
Classification : 52-XX, 28-XX, 49-XX, 00-XX
Keywords: Best constants, isoperimetric inequality, quasiminimizers of the perimeter
@article{JEMS_2013_15_3_a14,
     author = {Marco Cicalese and Gian Paolo Leonardi},
     title = {Best constants for the isoperimetric inequality in quantitative form},
     journal = {Journal of the European Mathematical Society},
     pages = {1101--1129},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     doi = {10.4171/jems/387},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/387/}
}
TY  - JOUR
AU  - Marco Cicalese
AU  - Gian Paolo Leonardi
TI  - Best constants for the isoperimetric inequality in quantitative form
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 1101
EP  - 1129
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/387/
DO  - 10.4171/jems/387
ID  - JEMS_2013_15_3_a14
ER  - 
%0 Journal Article
%A Marco Cicalese
%A Gian Paolo Leonardi
%T Best constants for the isoperimetric inequality in quantitative form
%J Journal of the European Mathematical Society
%D 2013
%P 1101-1129
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/387/
%R 10.4171/jems/387
%F JEMS_2013_15_3_a14
Marco Cicalese; Gian Paolo Leonardi. Best constants for the isoperimetric inequality in quantitative form. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 1101-1129. doi : 10.4171/jems/387. http://geodesic.mathdoc.fr/articles/10.4171/jems/387/

Cité par Sources :