Best constants for the isoperimetric inequality in quantitative form
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 1101-1129
Cet article a éte moissonné depuis la source EMS Press
We prove some results in the context of isoperimetric inequalities with quantitative terms. In the 2-dimensional case, our main contribution is a method for determining the optimal coefficients c1,...,cm in the inequality δP(E)≥∑k=1mckα(E)k+o(α(E)m), valid for each Borel set E with positive and finite area, with δP(E) and α(E) being, respectively, the \textit{isoperimetric deficit} and the \textit{Fraenkel asymmetry} of E. In n dimensions, besides proving existence and regularity properties of minimizers for a wide class of \textit{quantitative isoperimetric quotients} including the lower semicontinuous extension of α(E)2δP(E), we describe the general technique upon which our 2-dimensional result is based. This technique, called Iterative Selection Principle, extends the one introduced in [12].
Classification :
52-XX, 28-XX, 49-XX, 00-XX
Keywords: Best constants, isoperimetric inequality, quasiminimizers of the perimeter
Keywords: Best constants, isoperimetric inequality, quasiminimizers of the perimeter
@article{JEMS_2013_15_3_a14,
author = {Marco Cicalese and Gian Paolo Leonardi},
title = {Best constants for the isoperimetric inequality in quantitative form},
journal = {Journal of the European Mathematical Society},
pages = {1101--1129},
year = {2013},
volume = {15},
number = {3},
doi = {10.4171/jems/387},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/387/}
}
TY - JOUR AU - Marco Cicalese AU - Gian Paolo Leonardi TI - Best constants for the isoperimetric inequality in quantitative form JO - Journal of the European Mathematical Society PY - 2013 SP - 1101 EP - 1129 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/387/ DO - 10.4171/jems/387 ID - JEMS_2013_15_3_a14 ER -
%0 Journal Article %A Marco Cicalese %A Gian Paolo Leonardi %T Best constants for the isoperimetric inequality in quantitative form %J Journal of the European Mathematical Society %D 2013 %P 1101-1129 %V 15 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/387/ %R 10.4171/jems/387 %F JEMS_2013_15_3_a14
Marco Cicalese; Gian Paolo Leonardi. Best constants for the isoperimetric inequality in quantitative form. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 1101-1129. doi: 10.4171/jems/387
Cité par Sources :