About the Calabi problem: a finite-dimensional approach
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 1033-1065
Voir la notice de l'article provenant de la source EMS Press
Let us consider a projective manifold Mn and a smooth volume form Ω on M. We define the gradient flow associated to the problem of Ω-balanced metrics in the quantum formalism, the Ω-balancing flow. At the limit of the quantization, we prove that (see Theorem 1) the Ω-balancing flow converges towards a natural flow in Kähler geometry, the Ω-Kähler flow. We also prove the long time existence of the Ω-Kähler flow and its convergence towards Yau's solution to the Calabi conjecture of prescribing the volume form in a given Kähler class (see Theorem 2). We derive some natural geometric consequences of our study.
Classification :
53-XX, 32-XX, 00-XX
Keywords: Calabi problem, Balanced metrics, canonical flow, Kähler geometry, moment map, Bergman kernel, asymptotics, quantization
Keywords: Calabi problem, Balanced metrics, canonical flow, Kähler geometry, moment map, Bergman kernel, asymptotics, quantization
@article{JEMS_2013_15_3_a12,
author = {H.-D. Cao and J. Keller},
title = {About the {Calabi} problem: a finite-dimensional approach},
journal = {Journal of the European Mathematical Society},
pages = {1033--1065},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2013},
doi = {10.4171/jems/385},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/385/}
}
TY - JOUR AU - H.-D. Cao AU - J. Keller TI - About the Calabi problem: a finite-dimensional approach JO - Journal of the European Mathematical Society PY - 2013 SP - 1033 EP - 1065 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/385/ DO - 10.4171/jems/385 ID - JEMS_2013_15_3_a12 ER -
H.-D. Cao; J. Keller. About the Calabi problem: a finite-dimensional approach. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 1033-1065. doi: 10.4171/jems/385
Cité par Sources :