Legendrian and transverse twist knots
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 969-995
Voir la notice de l'article provenant de la source EMS Press
In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the m(52) knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least n different Legendrian representatives with maximal Thurston–Bennequin number of the twist knot K−2n with crossing number 2n+1. In this paper we give a complete classification of Legendrian and transverse representatives of twist knots. In particular, we show that K−2n has exactly ⌈2n2⌉ Legendrian representatives with maximal Thurston–Bennequin number, and ⌈2n⌉ transverse representatives with maximal self-linking number. Our techniques include convex surface theory, Legendrian ruling invariants, and Heegaard–Floer homology.
Classification :
57-XX, 53-XX, 00-XX
Keywords: Legendrian knot, transverse knot, twist knots
Keywords: Legendrian knot, transverse knot, twist knots
@article{JEMS_2013_15_3_a10,
author = {John B. Etnyre and Lenhard L. Ng and Vera V\'ertesi},
title = {Legendrian and transverse twist knots},
journal = {Journal of the European Mathematical Society},
pages = {969--995},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2013},
doi = {10.4171/jems/383},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/383/}
}
TY - JOUR AU - John B. Etnyre AU - Lenhard L. Ng AU - Vera Vértesi TI - Legendrian and transverse twist knots JO - Journal of the European Mathematical Society PY - 2013 SP - 969 EP - 995 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/383/ DO - 10.4171/jems/383 ID - JEMS_2013_15_3_a10 ER -
John B. Etnyre; Lenhard L. Ng; Vera Vértesi. Legendrian and transverse twist knots. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 969-995. doi: 10.4171/jems/383
Cité par Sources :