The automorphism group of $\overline{M}_{0,n}$
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 949-968.

Voir la notice de l'article provenant de la source EMS Press

The paper studies fiber type morphisms between moduli spaces of pointed rational curves. Via Kapranov’s description we are able to prove that the only such morphisms are forgetful maps. This allows us to show that the automorphism group of M0,n​ is the permutation group on n elements as soon as n≥5.
DOI : 10.4171/jems/382
Classification : 14-XX, 00-XX
Keywords: Moduli space of curves, pointed rational curves, fibrations, automorphism
@article{JEMS_2013_15_3_a9,
     author = {Andrea Bruno and Massimiliano Mella},
     title = {The automorphism group of $\overline{M}_{0,n}$},
     journal = {Journal of the European Mathematical Society},
     pages = {949--968},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     doi = {10.4171/jems/382},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/382/}
}
TY  - JOUR
AU  - Andrea Bruno
AU  - Massimiliano Mella
TI  - The automorphism group of $\overline{M}_{0,n}$
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 949
EP  - 968
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/382/
DO  - 10.4171/jems/382
ID  - JEMS_2013_15_3_a9
ER  - 
%0 Journal Article
%A Andrea Bruno
%A Massimiliano Mella
%T The automorphism group of $\overline{M}_{0,n}$
%J Journal of the European Mathematical Society
%D 2013
%P 949-968
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/382/
%R 10.4171/jems/382
%F JEMS_2013_15_3_a9
Andrea Bruno; Massimiliano Mella. The automorphism group of $\overline{M}_{0,n}$. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 949-968. doi : 10.4171/jems/382. http://geodesic.mathdoc.fr/articles/10.4171/jems/382/

Cité par Sources :