Separable solutions of quasilinear Lane–Emden equations
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 755-774
Cet article a éte moissonné depuis la source EMS Press
For 0−1either ε=1 or ε=−1, we prove the existence of solutions of −Δpu=εuq in a cone CS, with vertex 0 and opening S, vanishing on ∂CS, under the form u(x)=∣x∣−βω(∣x∣x). The problem reduces to a quasilinear elliptic equation on S and existence is based upon degree theory and homotopy methods. We also obtain a non-existence result in some critical case by an integral type identity.
Classification :
35-XX, 47-XX, 58-XX, 00-XX
Keywords: Quasilinear elliptic equations, p-Laplacian, cones, Leray–Schauder degree
Keywords: Quasilinear elliptic equations, p-Laplacian, cones, Leray–Schauder degree
@article{JEMS_2013_15_3_a2,
author = {Alessio Porretta and Laurent V\'eron},
title = {Separable solutions of quasilinear {Lane{\textendash}Emden} equations},
journal = {Journal of the European Mathematical Society},
pages = {755--774},
year = {2013},
volume = {15},
number = {3},
doi = {10.4171/jems/375},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/375/}
}
TY - JOUR AU - Alessio Porretta AU - Laurent Véron TI - Separable solutions of quasilinear Lane–Emden equations JO - Journal of the European Mathematical Society PY - 2013 SP - 755 EP - 774 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/375/ DO - 10.4171/jems/375 ID - JEMS_2013_15_3_a2 ER -
Alessio Porretta; Laurent Véron. Separable solutions of quasilinear Lane–Emden equations. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 755-774. doi: 10.4171/jems/375
Cité par Sources :