Amenability of linear-activity automaton groups
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 705-730
Cet article a éte moissonné depuis la source EMS Press
We prove that every linear-activity automaton group is amenable. The proof is based on showing that a random walk on a specially constructed degree 1 automaton group – the mother group – has asymptotic entropy 0. Our result answers an open question by Nekrashevych in the Kourovka notebook, and gives a partial answer to a question of Sidki.
Classification :
60-XX, 20-XX, 00-XX
Keywords: amenability, automaton groups, self-similar, random walk, entropy
Keywords: amenability, automaton groups, self-similar, random walk, entropy
@article{JEMS_2013_15_3_a0,
author = {Gideon Amir and Omer Angel and B\'alint Vir\'ag},
title = {Amenability of linear-activity automaton groups},
journal = {Journal of the European Mathematical Society},
pages = {705--730},
year = {2013},
volume = {15},
number = {3},
doi = {10.4171/jems/373},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/373/}
}
TY - JOUR AU - Gideon Amir AU - Omer Angel AU - Bálint Virág TI - Amenability of linear-activity automaton groups JO - Journal of the European Mathematical Society PY - 2013 SP - 705 EP - 730 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/373/ DO - 10.4171/jems/373 ID - JEMS_2013_15_3_a0 ER -
Gideon Amir; Omer Angel; Bálint Virág. Amenability of linear-activity automaton groups. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 705-730. doi: 10.4171/jems/373
Cité par Sources :