Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics
Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 659-680
Voir la notice de l'article provenant de la source EMS Press
In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the γk functions on the space of its hermitian metrics.
Classification :
53-XX, 32-XX, 00-XX
Keywords: Generalized Gauduchon metric, semilinear equation, conformal class
Keywords: Generalized Gauduchon metric, semilinear equation, conformal class
@article{JEMS_2013_15_2_a7,
author = {Jixiang Fu and Zhizhang Wang and Damin Wu},
title = {Semilinear equations, the $\gamma_k$ function, and generalized {Gauduchon} metrics},
journal = {Journal of the European Mathematical Society},
pages = {659--680},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2013},
doi = {10.4171/jems/370},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/370/}
}
TY - JOUR AU - Jixiang Fu AU - Zhizhang Wang AU - Damin Wu TI - Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics JO - Journal of the European Mathematical Society PY - 2013 SP - 659 EP - 680 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/370/ DO - 10.4171/jems/370 ID - JEMS_2013_15_2_a7 ER -
%0 Journal Article %A Jixiang Fu %A Zhizhang Wang %A Damin Wu %T Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics %J Journal of the European Mathematical Society %D 2013 %P 659-680 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/370/ %R 10.4171/jems/370 %F JEMS_2013_15_2_a7
Jixiang Fu; Zhizhang Wang; Damin Wu. Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics. Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 659-680. doi: 10.4171/jems/370
Cité par Sources :