Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics
Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 659-680.

Voir la notice de l'article provenant de la source EMS Press

In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the γk​ functions on the space of its hermitian metrics.
DOI : 10.4171/jems/370
Classification : 53-XX, 32-XX, 00-XX
Keywords: Generalized Gauduchon metric, semilinear equation, conformal class
@article{JEMS_2013_15_2_a7,
     author = {Jixiang Fu and Zhizhang Wang and Damin Wu},
     title = {Semilinear equations, the $\gamma_k$ function, and generalized {Gauduchon} metrics},
     journal = {Journal of the European Mathematical Society},
     pages = {659--680},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     doi = {10.4171/jems/370},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/370/}
}
TY  - JOUR
AU  - Jixiang Fu
AU  - Zhizhang Wang
AU  - Damin Wu
TI  - Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 659
EP  - 680
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/370/
DO  - 10.4171/jems/370
ID  - JEMS_2013_15_2_a7
ER  - 
%0 Journal Article
%A Jixiang Fu
%A Zhizhang Wang
%A Damin Wu
%T Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics
%J Journal of the European Mathematical Society
%D 2013
%P 659-680
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/370/
%R 10.4171/jems/370
%F JEMS_2013_15_2_a7
Jixiang Fu; Zhizhang Wang; Damin Wu. Semilinear equations, the $\gamma_k$ function, and generalized Gauduchon metrics. Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 659-680. doi : 10.4171/jems/370. http://geodesic.mathdoc.fr/articles/10.4171/jems/370/

Cité par Sources :