Semi-monotone sets
Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 635-657
Voir la notice de l'article provenant de la source EMS Press
A coordinate cone in Rn is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of Rn, definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone set is a topological regular cell.
Classification :
14-XX, 57-XX, 00-XX
Keywords: o-minimal geometry, regular cell
Keywords: o-minimal geometry, regular cell
@article{JEMS_2013_15_2_a6,
author = {Saugata Basu and Andrei Gabrielov and Nicolai Vorobjov},
title = {Semi-monotone sets},
journal = {Journal of the European Mathematical Society},
pages = {635--657},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2013},
doi = {10.4171/jems/369},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/369/}
}
TY - JOUR AU - Saugata Basu AU - Andrei Gabrielov AU - Nicolai Vorobjov TI - Semi-monotone sets JO - Journal of the European Mathematical Society PY - 2013 SP - 635 EP - 657 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/369/ DO - 10.4171/jems/369 ID - JEMS_2013_15_2_a6 ER -
Saugata Basu; Andrei Gabrielov; Nicolai Vorobjov. Semi-monotone sets. Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 635-657. doi: 10.4171/jems/369
Cité par Sources :