Structure of second-order symmetric Lorentzian manifolds
Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 595-634
Voir la notice de l'article provenant de la source EMS Press
Second-order symmetric Lorentzian spaces, that is to say, Lorentzian manifolds with vanishing second derivative ∇∇R≡0 of the curvature tensor R, are characterized by several geometric properties, and explicitly presented. Locally, they are a product M=M1×M2 where each factor is uniquely determined as follows: M2 is a Riemannian symmetric space and M1 is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family. In the proper case (i.e., ∇R=0 at some point), the curvature tensor turns out to be described by some local affine function which characterizes a globally defined {parallel lightlike direction}. As a consequence, the corresponding global classification is obtained, namely: any complete second-order symmetric space admits as universal covering such a product M1×M2. From the technical point of view, a direct analysis of the second-symmetry partial differential equations is carried out leading to several results of independent interest relative to spaces with a parallel lightlike vector field—the so-called Brinkmann spaces.
Classification :
53-XX, 58-XX, 00-XX
Keywords: Second-order symmetric spaces, curvature conditions, Brinkmann spaces, Lorentzian symmetric spaces, plane waves, holonomy of Lorentzian manifolds
Keywords: Second-order symmetric spaces, curvature conditions, Brinkmann spaces, Lorentzian symmetric spaces, plane waves, holonomy of Lorentzian manifolds
@article{JEMS_2013_15_2_a5,
author = {Oihane F. Blanco and Jos\'e M. M. Senovilla and Miguel S\'anchez},
title = {Structure of second-order symmetric {Lorentzian} manifolds},
journal = {Journal of the European Mathematical Society},
pages = {595--634},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2013},
doi = {10.4171/jems/368},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/368/}
}
TY - JOUR AU - Oihane F. Blanco AU - José M. M. Senovilla AU - Miguel Sánchez TI - Structure of second-order symmetric Lorentzian manifolds JO - Journal of the European Mathematical Society PY - 2013 SP - 595 EP - 634 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/368/ DO - 10.4171/jems/368 ID - JEMS_2013_15_2_a5 ER -
%0 Journal Article %A Oihane F. Blanco %A José M. M. Senovilla %A Miguel Sánchez %T Structure of second-order symmetric Lorentzian manifolds %J Journal of the European Mathematical Society %D 2013 %P 595-634 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/368/ %R 10.4171/jems/368 %F JEMS_2013_15_2_a5
Oihane F. Blanco; José M. M. Senovilla; Miguel Sánchez. Structure of second-order symmetric Lorentzian manifolds. Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 595-634. doi: 10.4171/jems/368
Cité par Sources :