Reeb vector fields and open book decompositions
Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 443-507.

Voir la notice de l'article provenant de la source EMS Press

We determine parts of the contact homology of certain contact 3-manifolds in the framework of open book decompositions, due to Giroux. We study two cases: when the monodromy map of the compatible open book is periodic and when it is pseudo-Anosov. For an open book with periodic monodromy, we verify the Weinstein conjecture. In the case of an open book with pseudo-Anosov monodromy, suppose the boundary of a page of the open book is connected and the fractional Dehn twist coefficient c equals k=n, where n is the number of prongs along the boundary. If k≥2, then there is a well-defined linearized contact homology group. If k≥3, then the linearized contact homology is exponentially growing with respect to the action, and every Reeb vector field of the corresponding contact structure admits an infinite number of simple periodic orbits.
DOI : 10.4171/jems/365
Classification : 57-XX, 53-XX, 00-XX
Keywords: Tight, contact structure, open book decomposition, mapping class group, Reeb dynamics, pseudo-Anosov, contact homology
@article{JEMS_2013_15_2_a2,
     author = {Vincent Colin and Ko Honda},
     title = {Reeb vector fields and open book decompositions},
     journal = {Journal of the European Mathematical Society},
     pages = {443--507},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     doi = {10.4171/jems/365},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/365/}
}
TY  - JOUR
AU  - Vincent Colin
AU  - Ko Honda
TI  - Reeb vector fields and open book decompositions
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 443
EP  - 507
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/365/
DO  - 10.4171/jems/365
ID  - JEMS_2013_15_2_a2
ER  - 
%0 Journal Article
%A Vincent Colin
%A Ko Honda
%T Reeb vector fields and open book decompositions
%J Journal of the European Mathematical Society
%D 2013
%P 443-507
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/365/
%R 10.4171/jems/365
%F JEMS_2013_15_2_a2
Vincent Colin; Ko Honda. Reeb vector fields and open book decompositions. Journal of the European Mathematical Society, Tome 15 (2013) no. 2, pp. 443-507. doi : 10.4171/jems/365. http://geodesic.mathdoc.fr/articles/10.4171/jems/365/

Cité par Sources :