Markov convexity and local rigidity of distorted metrics
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 287-337
Voir la notice de l'article provenant de la source EMS Press
It is shown that a Banach space admits an equivalent norm whose modulus of uniform convexity has power-type p if and only if it is Markov p-convex. Counterexamples are constructed to natural questions related to isomorphic uniform convexity of metric spaces, showing in particular that tree metrics fail to have the dichotomy property.
Classification :
46-XX, 05-XX, 51-XX, 00-XX
Keywords: Uniform convexity, Markov convexity, local regidity, tree metrics
Keywords: Uniform convexity, Markov convexity, local regidity, tree metrics
@article{JEMS_2013_15_1_a8,
author = {Manor Mendel and Assaf Naor},
title = {Markov convexity and local rigidity of distorted metrics},
journal = {Journal of the European Mathematical Society},
pages = {287--337},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2013},
doi = {10.4171/jems/362},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/362/}
}
TY - JOUR AU - Manor Mendel AU - Assaf Naor TI - Markov convexity and local rigidity of distorted metrics JO - Journal of the European Mathematical Society PY - 2013 SP - 287 EP - 337 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/362/ DO - 10.4171/jems/362 ID - JEMS_2013_15_1_a8 ER -
Manor Mendel; Assaf Naor. Markov convexity and local rigidity of distorted metrics. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 287-337. doi: 10.4171/jems/362
Cité par Sources :