Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 229-286
Cet article a éte moissonné depuis la source EMS Press
We prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplicative potential on Td,d≥1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are C∞ then the solutions are C∞. The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized operators ("Green functions") along scales of Sobolev spaces. The key off-diagonal decay estimates of the Green functions are proved via a new multiscale inductive analysis. The main novelty concerns the measure and "complexity" estimates.
Classification :
35-XX, 37-XX, 00-XX
Keywords: Nonlinear Schrödinger equation, Nash–Moser theory, KAM for PDE, quasi-periodic solutions, small divisors, in
Keywords: Nonlinear Schrödinger equation, Nash–Moser theory, KAM for PDE, quasi-periodic solutions, small divisors, in
@article{JEMS_2013_15_1_a7,
author = {Massimiliano Berti and Philippe Bolle},
title = {Quasi-periodic solutions with {Sobolev} regularity of {NLS} on $\mathbb T^d$ with a multiplicative potential},
journal = {Journal of the European Mathematical Society},
pages = {229--286},
year = {2013},
volume = {15},
number = {1},
doi = {10.4171/jems/361},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/361/}
}
TY - JOUR AU - Massimiliano Berti AU - Philippe Bolle TI - Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential JO - Journal of the European Mathematical Society PY - 2013 SP - 229 EP - 286 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/361/ DO - 10.4171/jems/361 ID - JEMS_2013_15_1_a7 ER -
%0 Journal Article %A Massimiliano Berti %A Philippe Bolle %T Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential %J Journal of the European Mathematical Society %D 2013 %P 229-286 %V 15 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/361/ %R 10.4171/jems/361 %F JEMS_2013_15_1_a7
Massimiliano Berti; Philippe Bolle. Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb T^d$ with a multiplicative potential. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 229-286. doi: 10.4171/jems/361
Cité par Sources :