Dynamics of one-resonant biholomorphisms
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 179-200
Voir la notice de l'article provenant de la source EMS Press
Our first main result is a construction of a simple formal normal form for holomorphic diffeomorphisms in Cn whose differentials have one-dimensional family of resonances in the first m eigenvalues, m≤n (but more resonances are allowed for other eigenvalues). Next, we provide invariants and give conditions for the existence of basins of attraction. Finally, we give applications and examples demonstrating the sharpness of our conditions.
Classification :
35-XX, 32-XX, 00-XX
Keywords: Discrete dynamics, resonances, normal forms, basins of attraction
Keywords: Discrete dynamics, resonances, normal forms, basins of attraction
@article{JEMS_2013_15_1_a5,
author = {Filippo Bracci and Dmitri Zaitsev},
title = {Dynamics of one-resonant biholomorphisms},
journal = {Journal of the European Mathematical Society},
pages = {179--200},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2013},
doi = {10.4171/jems/359},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/359/}
}
TY - JOUR AU - Filippo Bracci AU - Dmitri Zaitsev TI - Dynamics of one-resonant biholomorphisms JO - Journal of the European Mathematical Society PY - 2013 SP - 179 EP - 200 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/359/ DO - 10.4171/jems/359 ID - JEMS_2013_15_1_a5 ER -
Filippo Bracci; Dmitri Zaitsev. Dynamics of one-resonant biholomorphisms. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 179-200. doi: 10.4171/jems/359
Cité par Sources :