A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 145-155
Voir la notice de l'article provenant de la source EMS Press
We consider functions u∈W0m,1(Ω), where Ω⊂RN is a smooth bounded domain, and m≥2 is an integer. For all j≥0, 1≤k≤m−1, such that 1≤j+k≤m, we prove that d(x)m−j−k∂ju(x)∈W0k,1(Ω) with
Classification :
26-XX, 46-XX, 00-XX
Keywords: Hardy inequality, Sobolev spaces
Keywords: Hardy inequality, Sobolev spaces
@article{JEMS_2013_15_1_a3,
author = {Hern\'an Castro and Juan D\'avila and Hui Wang},
title = {A {Hardy} type inequality for $W^{m,1}_0(\Omega)$ functions},
journal = {Journal of the European Mathematical Society},
pages = {145--155},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2013},
doi = {10.4171/jems/357},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/357/}
}
TY - JOUR
AU - Hernán Castro
AU - Juan Dávila
AU - Hui Wang
TI - A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions
JO - Journal of the European Mathematical Society
PY - 2013
SP - 145
EP - 155
VL - 15
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/357/
DO - 10.4171/jems/357
ID - JEMS_2013_15_1_a3
ER -
%0 Journal Article
%A Hernán Castro
%A Juan Dávila
%A Hui Wang
%T A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions
%J Journal of the European Mathematical Society
%D 2013
%P 145-155
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/357/
%R 10.4171/jems/357
%F JEMS_2013_15_1_a3
Hernán Castro; Juan Dávila; Hui Wang. A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 145-155. doi: 10.4171/jems/357
Cité par Sources :