Bridgeland-stable moduli spaces for $K$-trivial surfaces
Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 1-38
Voir la notice de l'article provenant de la source EMS Press
We give a one-parameter family of Bridgeland stability conditions on the derived category of a smooth projective complex surface S and describe "wall-crossing behavior'' for objects with the same invariants as OC(H) when H generates Pic(S) and C∈∣H∣. If, in addition, S is a K3 or Abelian surface, we use this description to construct a sequence of fine moduli spaces of Bridgeland-stable objects via Mukai flops and generalized elementary modifications of the universal coherent sheaf. We also discover a natural generalization of Thaddeus' stable pairs for curves embedded in the moduli spaces.
@article{JEMS_2013_15_1_a0,
author = {Daniele Arcara and Aaron Bertram},
title = {Bridgeland-stable moduli spaces for $K$-trivial surfaces},
journal = {Journal of the European Mathematical Society},
pages = {1--38},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2013},
doi = {10.4171/jems/354},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/354/}
}
TY - JOUR AU - Daniele Arcara AU - Aaron Bertram TI - Bridgeland-stable moduli spaces for $K$-trivial surfaces JO - Journal of the European Mathematical Society PY - 2013 SP - 1 EP - 38 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/354/ DO - 10.4171/jems/354 ID - JEMS_2013_15_1_a0 ER -
Daniele Arcara; Aaron Bertram. Bridgeland-stable moduli spaces for $K$-trivial surfaces. Journal of the European Mathematical Society, Tome 15 (2013) no. 1, pp. 1-38. doi: 10.4171/jems/354
Cité par Sources :