The Kähler Ricci flow on Fano manifolds (I)
Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 2001-2038
Voir la notice de l'article provenant de la source EMS Press
We study the evolution of pluri-anticanonical line bundles KM−ν along the Kähler Ricci flow on a Fano manifold M. Under some special conditions, we show that the convergence of this flow is determined by the properties of the pluri-anticanonical divisors of M. For example, the Kähler Ricci flow on M converges when M is a Fano surface satisfying c12(M)=1 or c12(M)=3. Combined with the works in [CW1] and [CW2], this gives a Ricci flow proof of the Calabi conjecture on Fano surfaces with reductive automorphism groups. The original proof of this conjecture is due to Gang Tian in [Tian90].
@article{JEMS_2012_14_6_a8,
author = {Xiuxiong Chen and Bing Wang},
title = {The {K\"ahler} {Ricci} flow on {Fano} manifolds {(I)}},
journal = {Journal of the European Mathematical Society},
pages = {2001--2038},
publisher = {mathdoc},
volume = {14},
number = {6},
year = {2012},
doi = {10.4171/jems/353},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/353/}
}
TY - JOUR AU - Xiuxiong Chen AU - Bing Wang TI - The Kähler Ricci flow on Fano manifolds (I) JO - Journal of the European Mathematical Society PY - 2012 SP - 2001 EP - 2038 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/353/ DO - 10.4171/jems/353 ID - JEMS_2012_14_6_a8 ER -
Xiuxiong Chen; Bing Wang. The Kähler Ricci flow on Fano manifolds (I). Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 2001-2038. doi: 10.4171/jems/353
Cité par Sources :