The Kähler Ricci flow on Fano manifolds (I)
Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 2001-2038.

Voir la notice de l'article provenant de la source EMS Press

We study the evolution of pluri-anticanonical line bundles KM−ν​ along the Kähler Ricci flow on a Fano manifold M. Under some special conditions, we show that the convergence of this flow is determined by the properties of the pluri-anticanonical divisors of M. For example, the Kähler Ricci flow on M converges when M is a Fano surface satisfying c12​(M)=1 or c12​(M)=3. Combined with the works in [CW1] and [CW2], this gives a Ricci flow proof of the Calabi conjecture on Fano surfaces with reductive automorphism groups. The original proof of this conjecture is due to Gang Tian in [Tian90].
DOI : 10.4171/jems/353
Classification : 57-XX, 00-XX
Keywords:
@article{JEMS_2012_14_6_a8,
     author = {Xiuxiong Chen and Bing Wang},
     title = {The {K\"ahler} {Ricci} flow on {Fano} manifolds {(I)}},
     journal = {Journal of the European Mathematical Society},
     pages = {2001--2038},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2012},
     doi = {10.4171/jems/353},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/353/}
}
TY  - JOUR
AU  - Xiuxiong Chen
AU  - Bing Wang
TI  - The Kähler Ricci flow on Fano manifolds (I)
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 2001
EP  - 2038
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/353/
DO  - 10.4171/jems/353
ID  - JEMS_2012_14_6_a8
ER  - 
%0 Journal Article
%A Xiuxiong Chen
%A Bing Wang
%T The Kähler Ricci flow on Fano manifolds (I)
%J Journal of the European Mathematical Society
%D 2012
%P 2001-2038
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/353/
%R 10.4171/jems/353
%F JEMS_2012_14_6_a8
Xiuxiong Chen; Bing Wang. The Kähler Ricci flow on Fano manifolds (I). Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 2001-2038. doi : 10.4171/jems/353. http://geodesic.mathdoc.fr/articles/10.4171/jems/353/

Cité par Sources :