$\mathcal L$-invariants and Darmon cycles attached to modular forms
Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 1955-1999
Cet article a éte moissonné depuis la source EMS Press
Let f be a modular eigenform of even weight k≥2 and new at a prime p dividing exactly the level with respect to an indefinite quaternion algebra. The theory of Fontaine-Mazur allows to attach to f a monodromy module DfFM and an L-invariant LfFM. The first goal of this paper is building a suitable p-adic integration theory that allows us to construct a new monodromy module Df and L-invariant Lf, in the spirit of Darmon. The two monodromy modules are isomorphic, and in particular the two L-invariants are equal. Let K be a real quadratic field and assume the sign of the functional equation of the L-series of f over K is −1. The Bloch-Beilinson conjectures suggest that there should be a supply of elements in the Selmer group of the motive attached to f over the tower of narrow ring class fields of K. Generalizing work of Darmon for k=2, we give a construction of local cohomology classes which we expect to arise from global classes and satisfy an explicit reciprocity law, accounting for the above prediction.
Classification :
14-XX, 00-XX
Keywords: Darmon point, L-invariant, Shimura curves, quaternion algebra, p-adic integration
Keywords: Darmon point, L-invariant, Shimura curves, quaternion algebra, p-adic integration
@article{JEMS_2012_14_6_a7,
author = {Victor Rotger and Marco Adamo Seveso},
title = {$\mathcal L$-invariants and {Darmon} cycles attached to modular forms},
journal = {Journal of the European Mathematical Society},
pages = {1955--1999},
year = {2012},
volume = {14},
number = {6},
doi = {10.4171/jems/352},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/352/}
}
TY - JOUR AU - Victor Rotger AU - Marco Adamo Seveso TI - $\mathcal L$-invariants and Darmon cycles attached to modular forms JO - Journal of the European Mathematical Society PY - 2012 SP - 1955 EP - 1999 VL - 14 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/352/ DO - 10.4171/jems/352 ID - JEMS_2012_14_6_a7 ER -
%0 Journal Article %A Victor Rotger %A Marco Adamo Seveso %T $\mathcal L$-invariants and Darmon cycles attached to modular forms %J Journal of the European Mathematical Society %D 2012 %P 1955-1999 %V 14 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/352/ %R 10.4171/jems/352 %F JEMS_2012_14_6_a7
Victor Rotger; Marco Adamo Seveso. $\mathcal L$-invariants and Darmon cycles attached to modular forms. Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 1955-1999. doi: 10.4171/jems/352
Cité par Sources :