$\mathcal L$-invariants and Darmon cycles attached to modular forms
Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 1955-1999.

Voir la notice de l'article provenant de la source EMS Press

Let f be a modular eigenform of even weight k≥2 and new at a prime p dividing exactly the level with respect to an indefinite quaternion algebra. The theory of Fontaine-Mazur allows to attach to f a monodromy module DfFM​ and an L-invariant LfFM​. The first goal of this paper is building a suitable p-adic integration theory that allows us to construct a new monodromy module Df​ and L-invariant Lf​, in the spirit of Darmon. The two monodromy modules are isomorphic, and in particular the two L-invariants are equal. Let K be a real quadratic field and assume the sign of the functional equation of the L-series of f over K is −1. The Bloch-Beilinson conjectures suggest that there should be a supply of elements in the Selmer group of the motive attached to f over the tower of narrow ring class fields of K. Generalizing work of Darmon for k=2, we give a construction of local cohomology classes which we expect to arise from global classes and satisfy an explicit reciprocity law, accounting for the above prediction.
DOI : 10.4171/jems/352
Classification : 14-XX, 00-XX
Keywords: Darmon point, L-invariant, Shimura curves, quaternion algebra, p-adic integration
@article{JEMS_2012_14_6_a7,
     author = {Victor Rotger and Marco Adamo Seveso},
     title = {$\mathcal L$-invariants and {Darmon} cycles attached to modular forms},
     journal = {Journal of the European Mathematical Society},
     pages = {1955--1999},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2012},
     doi = {10.4171/jems/352},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/352/}
}
TY  - JOUR
AU  - Victor Rotger
AU  - Marco Adamo Seveso
TI  - $\mathcal L$-invariants and Darmon cycles attached to modular forms
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 1955
EP  - 1999
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/352/
DO  - 10.4171/jems/352
ID  - JEMS_2012_14_6_a7
ER  - 
%0 Journal Article
%A Victor Rotger
%A Marco Adamo Seveso
%T $\mathcal L$-invariants and Darmon cycles attached to modular forms
%J Journal of the European Mathematical Society
%D 2012
%P 1955-1999
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/352/
%R 10.4171/jems/352
%F JEMS_2012_14_6_a7
Victor Rotger; Marco Adamo Seveso. $\mathcal L$-invariants and Darmon cycles attached to modular forms. Journal of the European Mathematical Society, Tome 14 (2012) no. 6, pp. 1955-1999. doi : 10.4171/jems/352. http://geodesic.mathdoc.fr/articles/10.4171/jems/352/

Cité par Sources :