Unique Bernoulli $g$-measures
Journal of the European Mathematical Society, Tome 14 (2012) no. 5, pp. 1599-1615.

Voir la notice de l'article provenant de la source EMS Press

We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a g-measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique g-measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the g-measure.
DOI : 10.4171/jems/342
Classification : 37-XX, 00-XX, 60-XX
Keywords: Bernoulli measure, g-measure, chains with complete connections
@article{JEMS_2012_14_5_a8,
     author = {Anders Johansson and Anders \"Oberg and Mark Pollicott},
     title = {Unique {Bernoulli} $g$-measures},
     journal = {Journal of the European Mathematical Society},
     pages = {1599--1615},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2012},
     doi = {10.4171/jems/342},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/342/}
}
TY  - JOUR
AU  - Anders Johansson
AU  - Anders Öberg
AU  - Mark Pollicott
TI  - Unique Bernoulli $g$-measures
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 1599
EP  - 1615
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/342/
DO  - 10.4171/jems/342
ID  - JEMS_2012_14_5_a8
ER  - 
%0 Journal Article
%A Anders Johansson
%A Anders Öberg
%A Mark Pollicott
%T Unique Bernoulli $g$-measures
%J Journal of the European Mathematical Society
%D 2012
%P 1599-1615
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/342/
%R 10.4171/jems/342
%F JEMS_2012_14_5_a8
Anders Johansson; Anders Öberg; Mark Pollicott. Unique Bernoulli $g$-measures. Journal of the European Mathematical Society, Tome 14 (2012) no. 5, pp. 1599-1615. doi : 10.4171/jems/342. http://geodesic.mathdoc.fr/articles/10.4171/jems/342/

Cité par Sources :