Unique Bernoulli $g$-measures
Journal of the European Mathematical Society, Tome 14 (2012) no. 5, pp. 1599-1615
Voir la notice de l'article provenant de la source EMS Press
We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a g-measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique g-measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the g-measure.
Classification :
37-XX, 00-XX, 60-XX
Keywords: Bernoulli measure, g-measure, chains with complete connections
Keywords: Bernoulli measure, g-measure, chains with complete connections
@article{JEMS_2012_14_5_a8,
author = {Anders Johansson and Anders \"Oberg and Mark Pollicott},
title = {Unique {Bernoulli} $g$-measures},
journal = {Journal of the European Mathematical Society},
pages = {1599--1615},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2012},
doi = {10.4171/jems/342},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/342/}
}
TY - JOUR AU - Anders Johansson AU - Anders Öberg AU - Mark Pollicott TI - Unique Bernoulli $g$-measures JO - Journal of the European Mathematical Society PY - 2012 SP - 1599 EP - 1615 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/342/ DO - 10.4171/jems/342 ID - JEMS_2012_14_5_a8 ER -
Anders Johansson; Anders Öberg; Mark Pollicott. Unique Bernoulli $g$-measures. Journal of the European Mathematical Society, Tome 14 (2012) no. 5, pp. 1599-1615. doi: 10.4171/jems/342
Cité par Sources :