The density of representation degrees
Journal of the European Mathematical Society, Tome 14 (2012) no. 5, pp. 1519-1537
Cet article a éte moissonné depuis la source EMS Press
For a group G and a positive real number x, define dG(x) to be the number of integers less than x which are dimensions of irreducible complex representations of G. We study the asymptotics of dG(x) for algebraic groups, arithmetic groups and finitely generated linear groups. In particular we prove an "alternative" for finitely generated linear groups G in characteristic zero, showing that either there exists α>0 such that dG(x)>xα for all large x, or G is virtually abelian (in which case dG(x) is bounded).
@article{JEMS_2012_14_5_a5,
author = {Martin W. Liebeck and Dan Segal and Aner Shalev},
title = {The density of representation degrees},
journal = {Journal of the European Mathematical Society},
pages = {1519--1537},
year = {2012},
volume = {14},
number = {5},
doi = {10.4171/jems/339},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/339/}
}
TY - JOUR AU - Martin W. Liebeck AU - Dan Segal AU - Aner Shalev TI - The density of representation degrees JO - Journal of the European Mathematical Society PY - 2012 SP - 1519 EP - 1537 VL - 14 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/339/ DO - 10.4171/jems/339 ID - JEMS_2012_14_5_a5 ER -
Martin W. Liebeck; Dan Segal; Aner Shalev. The density of representation degrees. Journal of the European Mathematical Society, Tome 14 (2012) no. 5, pp. 1519-1537. doi: 10.4171/jems/339
Cité par Sources :