Voir la notice de l'article provenant de la source EMS Press
@article{JEMS_2012_14_4_a8, author = {Andrea R. Nahmod and Tadahiro Oh and Luc Rey-Bellet and Gigliola Staffilani}, title = {Invariant weighted {Wiener} measures and almost sure global well-posedness for the periodic derivative {NLS}}, journal = {Journal of the European Mathematical Society}, pages = {1275--1330}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2012}, doi = {10.4171/jems/333}, url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/333/} }
TY - JOUR AU - Andrea R. Nahmod AU - Tadahiro Oh AU - Luc Rey-Bellet AU - Gigliola Staffilani TI - Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS JO - Journal of the European Mathematical Society PY - 2012 SP - 1275 EP - 1330 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/333/ DO - 10.4171/jems/333 ID - JEMS_2012_14_4_a8 ER -
%0 Journal Article %A Andrea R. Nahmod %A Tadahiro Oh %A Luc Rey-Bellet %A Gigliola Staffilani %T Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS %J Journal of the European Mathematical Society %D 2012 %P 1275-1330 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/333/ %R 10.4171/jems/333 %F JEMS_2012_14_4_a8
Andrea R. Nahmod; Tadahiro Oh; Luc Rey-Bellet; Gigliola Staffilani. Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 1275-1330. doi : 10.4171/jems/333. http://geodesic.mathdoc.fr/articles/10.4171/jems/333/
Cité par Sources :