Algebraic $K$-theory of the first Morava $K$-theory
Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 1041-1079
Cet article a éte moissonné depuis la source EMS Press
For a prime p≥5, we compute the algebraic K-theory modulo p and v1 of the mod p Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v1 topological Hochschild homology. Using a localization sequence, we also compute the K-theory modulo p and v1 of the first Morava K-theory.
Classification :
19-XX, 55-XX, 00-XX
Keywords: Algebraic K-theory, Morava K-theory, topological cyclic homology, topological Hochschild homology
Keywords: Algebraic K-theory, Morava K-theory, topological cyclic homology, topological Hochschild homology
@article{JEMS_2012_14_4_a1,
author = {Christian Ausoni and John Rognes},
title = {Algebraic $K$-theory of the first {Morava} $K$-theory},
journal = {Journal of the European Mathematical Society},
pages = {1041--1079},
year = {2012},
volume = {14},
number = {4},
doi = {10.4171/jems/326},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/326/}
}
TY - JOUR AU - Christian Ausoni AU - John Rognes TI - Algebraic $K$-theory of the first Morava $K$-theory JO - Journal of the European Mathematical Society PY - 2012 SP - 1041 EP - 1079 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/326/ DO - 10.4171/jems/326 ID - JEMS_2012_14_4_a1 ER -
Christian Ausoni; John Rognes. Algebraic $K$-theory of the first Morava $K$-theory. Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 1041-1079. doi: 10.4171/jems/326
Cité par Sources :