Algebraic $K$-theory of the first Morava $K$-theory
Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 1041-1079.

Voir la notice de l'article provenant de la source EMS Press

For a prime p≥5, we compute the algebraic K-theory modulo p and v1​ of the mod p Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v1​ topological Hochschild homology. Using a localization sequence, we also compute the K-theory modulo p and v1​ of the first Morava K-theory.
DOI : 10.4171/jems/326
Classification : 19-XX, 55-XX, 00-XX
Keywords: Algebraic K-theory, Morava K-theory, topological cyclic homology, topological Hochschild homology
@article{JEMS_2012_14_4_a1,
     author = {Christian Ausoni and John Rognes},
     title = {Algebraic $K$-theory of the first {Morava} $K$-theory},
     journal = {Journal of the European Mathematical Society},
     pages = {1041--1079},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2012},
     doi = {10.4171/jems/326},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/326/}
}
TY  - JOUR
AU  - Christian Ausoni
AU  - John Rognes
TI  - Algebraic $K$-theory of the first Morava $K$-theory
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 1041
EP  - 1079
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/326/
DO  - 10.4171/jems/326
ID  - JEMS_2012_14_4_a1
ER  - 
%0 Journal Article
%A Christian Ausoni
%A John Rognes
%T Algebraic $K$-theory of the first Morava $K$-theory
%J Journal of the European Mathematical Society
%D 2012
%P 1041-1079
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/326/
%R 10.4171/jems/326
%F JEMS_2012_14_4_a1
Christian Ausoni; John Rognes. Algebraic $K$-theory of the first Morava $K$-theory. Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 1041-1079. doi : 10.4171/jems/326. http://geodesic.mathdoc.fr/articles/10.4171/jems/326/

Cité par Sources :