Deformations of Kähler manifolds with nonvanishing holomorphic vector fields
Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 997-1040
Voir la notice de l'article provenant de la source EMS Press
We study compact Kähler manifolds X admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of tangential deformations, and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of X. We extend Calabi's theorem on the structure of compact Kähler manifolds X with c1(X)=0 to compact Kähler manifolds with nonvanishing tangent fields, proving that any such manifold X admits an arbitrarily small tangential deformation which is a suspension over a torus; that is, a quotient of F×Cs fibering over a torus T=Cs/Λ. We further show that either X is uniruled or, up to a finite Abelian covering, it is a small deformation of a product F×T where F is a Kähler manifold without tangent vector fields and T is a torus. A complete classification when X is a projective manifold, in which case the deformations may be omitted, or when dimX≤s+2 is also given. As an application, it is shown that the study of the dynamics of holomorphic tangent fields on compact Kähler manifolds reduces to the case of rational varieties.
Classification :
32-XX, 14-XX, 37-XX, 00-XX
Keywords: Kähler manifold, deformation, vector field, Fujiki manifold
Keywords: Kähler manifold, deformation, vector field, Fujiki manifold
@article{JEMS_2012_14_4_a0,
author = {Jaume Amor\'os and M\`onica Manjar{\'\i}n and Marcel Nicolau},
title = {Deformations of {K\"ahler} manifolds with nonvanishing holomorphic vector fields},
journal = {Journal of the European Mathematical Society},
pages = {997--1040},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2012},
doi = {10.4171/jems/325},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/325/}
}
TY - JOUR AU - Jaume Amorós AU - Mònica Manjarín AU - Marcel Nicolau TI - Deformations of Kähler manifolds with nonvanishing holomorphic vector fields JO - Journal of the European Mathematical Society PY - 2012 SP - 997 EP - 1040 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/325/ DO - 10.4171/jems/325 ID - JEMS_2012_14_4_a0 ER -
%0 Journal Article %A Jaume Amorós %A Mònica Manjarín %A Marcel Nicolau %T Deformations of Kähler manifolds with nonvanishing holomorphic vector fields %J Journal of the European Mathematical Society %D 2012 %P 997-1040 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/325/ %R 10.4171/jems/325 %F JEMS_2012_14_4_a0
Jaume Amorós; Mònica Manjarín; Marcel Nicolau. Deformations of Kähler manifolds with nonvanishing holomorphic vector fields. Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 997-1040. doi: 10.4171/jems/325
Cité par Sources :