Deformations of Kähler manifolds with nonvanishing holomorphic vector fields
Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 997-1040.

Voir la notice de l'article provenant de la source EMS Press

We study compact Kähler manifolds X admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of tangential deformations, and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of X. We extend Calabi's theorem on the structure of compact Kähler manifolds X with c1​(X)=0 to compact Kähler manifolds with nonvanishing tangent fields, proving that any such manifold X admits an arbitrarily small tangential deformation which is a suspension over a torus; that is, a quotient of F×Cs fibering over a torus T=Cs/Λ. We further show that either X is uniruled or, up to a finite Abelian covering, it is a small deformation of a product F×T where F is a Kähler manifold without tangent vector fields and T is a torus. A complete classification when X is a projective manifold, in which case the deformations may be omitted, or when dimX≤s+2 is also given. As an application, it is shown that the study of the dynamics of holomorphic tangent fields on compact Kähler manifolds reduces to the case of rational varieties.
DOI : 10.4171/jems/325
Classification : 32-XX, 14-XX, 37-XX, 00-XX
Keywords: Kähler manifold, deformation, vector field, Fujiki manifold
@article{JEMS_2012_14_4_a0,
     author = {Jaume Amor\'os and M\`onica Manjar{\'\i}n and Marcel Nicolau},
     title = {Deformations of {K\"ahler} manifolds with nonvanishing holomorphic vector fields},
     journal = {Journal of the European Mathematical Society},
     pages = {997--1040},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2012},
     doi = {10.4171/jems/325},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/325/}
}
TY  - JOUR
AU  - Jaume Amorós
AU  - Mònica Manjarín
AU  - Marcel Nicolau
TI  - Deformations of Kähler manifolds with nonvanishing holomorphic vector fields
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 997
EP  - 1040
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/325/
DO  - 10.4171/jems/325
ID  - JEMS_2012_14_4_a0
ER  - 
%0 Journal Article
%A Jaume Amorós
%A Mònica Manjarín
%A Marcel Nicolau
%T Deformations of Kähler manifolds with nonvanishing holomorphic vector fields
%J Journal of the European Mathematical Society
%D 2012
%P 997-1040
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/325/
%R 10.4171/jems/325
%F JEMS_2012_14_4_a0
Jaume Amorós; Mònica Manjarín; Marcel Nicolau. Deformations of Kähler manifolds with nonvanishing holomorphic vector fields. Journal of the European Mathematical Society, Tome 14 (2012) no. 4, pp. 997-1040. doi : 10.4171/jems/325. http://geodesic.mathdoc.fr/articles/10.4171/jems/325/

Cité par Sources :