Matrix identities involving multiplication and transposition
Journal of the European Mathematical Society, Tome 14 (2012) no. 3, pp. 937-969.

Voir la notice de l'article provenant de la source EMS Press

We study matrix identities involving multiplication and unary operations such as transposition or Moore–Penrose inversion. We prove that in many cases such identities admit no finite basis.
DOI : 10.4171/jems/323
Classification : 20-XX, 03-XX, 15-XX, 00-XX
Keywords: Matrix transposition, symplectic transpose, Moore–Penrose inverse, matrix law, identity basis, finite basis problem
@article{JEMS_2012_14_3_a10,
     author = {Karl Auinger and Igor Dolinka and Mikhail V. Volkov},
     title = {Matrix identities involving multiplication and transposition},
     journal = {Journal of the European Mathematical Society},
     pages = {937--969},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2012},
     doi = {10.4171/jems/323},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/323/}
}
TY  - JOUR
AU  - Karl Auinger
AU  - Igor Dolinka
AU  - Mikhail V. Volkov
TI  - Matrix identities involving multiplication and transposition
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 937
EP  - 969
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/323/
DO  - 10.4171/jems/323
ID  - JEMS_2012_14_3_a10
ER  - 
%0 Journal Article
%A Karl Auinger
%A Igor Dolinka
%A Mikhail V. Volkov
%T Matrix identities involving multiplication and transposition
%J Journal of the European Mathematical Society
%D 2012
%P 937-969
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/323/
%R 10.4171/jems/323
%F JEMS_2012_14_3_a10
Karl Auinger; Igor Dolinka; Mikhail V. Volkov. Matrix identities involving multiplication and transposition. Journal of the European Mathematical Society, Tome 14 (2012) no. 3, pp. 937-969. doi : 10.4171/jems/323. http://geodesic.mathdoc.fr/articles/10.4171/jems/323/

Cité par Sources :