Matrix identities involving multiplication and transposition
Journal of the European Mathematical Society, Tome 14 (2012) no. 3, pp. 937-969
Voir la notice de l'article provenant de la source EMS Press
We study matrix identities involving multiplication and unary operations such as transposition or Moore–Penrose inversion. We prove that in many cases such identities admit no finite basis.
Classification :
20-XX, 03-XX, 15-XX, 00-XX
Keywords: Matrix transposition, symplectic transpose, Moore–Penrose inverse, matrix law, identity basis, finite basis problem
Keywords: Matrix transposition, symplectic transpose, Moore–Penrose inverse, matrix law, identity basis, finite basis problem
@article{JEMS_2012_14_3_a10,
author = {Karl Auinger and Igor Dolinka and Mikhail V. Volkov},
title = {Matrix identities involving multiplication and transposition},
journal = {Journal of the European Mathematical Society},
pages = {937--969},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2012},
doi = {10.4171/jems/323},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/323/}
}
TY - JOUR AU - Karl Auinger AU - Igor Dolinka AU - Mikhail V. Volkov TI - Matrix identities involving multiplication and transposition JO - Journal of the European Mathematical Society PY - 2012 SP - 937 EP - 969 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/323/ DO - 10.4171/jems/323 ID - JEMS_2012_14_3_a10 ER -
%0 Journal Article %A Karl Auinger %A Igor Dolinka %A Mikhail V. Volkov %T Matrix identities involving multiplication and transposition %J Journal of the European Mathematical Society %D 2012 %P 937-969 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/323/ %R 10.4171/jems/323 %F JEMS_2012_14_3_a10
Karl Auinger; Igor Dolinka; Mikhail V. Volkov. Matrix identities involving multiplication and transposition. Journal of the European Mathematical Society, Tome 14 (2012) no. 3, pp. 937-969. doi: 10.4171/jems/323
Cité par Sources :