Mean curvature properties for p-Laplace phase transitions
Journal of the European Mathematical Society, Tome 7 (2005) no. 3, pp. 319-359
Cet article a éte moissonné depuis la source EMS Press
This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p-Laplacian type and a double well potential h0 with suitable growth conditions. We prove that level sets of solutions of Δpu=h0′(u) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.
@article{JEMS_2005_7_3_a2,
author = {Berardino Sciunzi and Enrico Valdinoci},
title = {Mean curvature properties for {p-Laplace} phase transitions},
journal = {Journal of the European Mathematical Society},
pages = {319--359},
year = {2005},
volume = {7},
number = {3},
doi = {10.4171/jems/31},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/31/}
}
TY - JOUR AU - Berardino Sciunzi AU - Enrico Valdinoci TI - Mean curvature properties for p-Laplace phase transitions JO - Journal of the European Mathematical Society PY - 2005 SP - 319 EP - 359 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/31/ DO - 10.4171/jems/31 ID - JEMS_2005_7_3_a2 ER -
Berardino Sciunzi; Enrico Valdinoci. Mean curvature properties for p-Laplace phase transitions. Journal of the European Mathematical Society, Tome 7 (2005) no. 3, pp. 319-359. doi: 10.4171/jems/31
Cité par Sources :