A variation norm Carleson theorem
Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 421-464
Voir la notice de l'article provenant de la source EMS Press
We strengthen the Carleson-Hunt theorem by proving Lp estimates for the r-variation of the partial sum operators for Fourier series and integrals, for r>max{p′,2}. Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.
@article{JEMS_2012_14_2_a3,
author = {Richard Oberlin and Andreas Seeger and Terence Tao and Christoph Thiele and James Wright},
title = {A variation norm {Carleson} theorem},
journal = {Journal of the European Mathematical Society},
pages = {421--464},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2012},
doi = {10.4171/jems/307},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/307/}
}
TY - JOUR AU - Richard Oberlin AU - Andreas Seeger AU - Terence Tao AU - Christoph Thiele AU - James Wright TI - A variation norm Carleson theorem JO - Journal of the European Mathematical Society PY - 2012 SP - 421 EP - 464 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/307/ DO - 10.4171/jems/307 ID - JEMS_2012_14_2_a3 ER -
%0 Journal Article %A Richard Oberlin %A Andreas Seeger %A Terence Tao %A Christoph Thiele %A James Wright %T A variation norm Carleson theorem %J Journal of the European Mathematical Society %D 2012 %P 421-464 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/307/ %R 10.4171/jems/307 %F JEMS_2012_14_2_a3
Richard Oberlin; Andreas Seeger; Terence Tao; Christoph Thiele; James Wright. A variation norm Carleson theorem. Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 421-464. doi: 10.4171/jems/307
Cité par Sources :