A variation norm Carleson theorem
Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 421-464.

Voir la notice de l'article provenant de la source EMS Press

We strengthen the Carleson-Hunt theorem by proving Lp estimates for the r-variation of the partial sum operators for Fourier series and integrals, for r>max{p′,2}. Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.
DOI : 10.4171/jems/307
Classification : 42-XX, 00-XX
@article{JEMS_2012_14_2_a3,
     author = {Richard Oberlin and Andreas Seeger and Terence Tao and Christoph Thiele and James Wright},
     title = {A variation norm {Carleson} theorem},
     journal = {Journal of the European Mathematical Society},
     pages = {421--464},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     doi = {10.4171/jems/307},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/307/}
}
TY  - JOUR
AU  - Richard Oberlin
AU  - Andreas Seeger
AU  - Terence Tao
AU  - Christoph Thiele
AU  - James Wright
TI  - A variation norm Carleson theorem
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 421
EP  - 464
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/307/
DO  - 10.4171/jems/307
ID  - JEMS_2012_14_2_a3
ER  - 
%0 Journal Article
%A Richard Oberlin
%A Andreas Seeger
%A Terence Tao
%A Christoph Thiele
%A James Wright
%T A variation norm Carleson theorem
%J Journal of the European Mathematical Society
%D 2012
%P 421-464
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/307/
%R 10.4171/jems/307
%F JEMS_2012_14_2_a3
Richard Oberlin; Andreas Seeger; Terence Tao; Christoph Thiele; James Wright. A variation norm Carleson theorem. Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 421-464. doi : 10.4171/jems/307. http://geodesic.mathdoc.fr/articles/10.4171/jems/307/

Cité par Sources :