An arithmetic Hilbert–Samuel theorem for pointed stable curves
Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 321-351
Voir la notice de l'article provenant de la source EMS Press
Let (O,∑,F∞) be an arithmetic ring of Krull dimension at most 1, S=SpecO and (X→S;σ1,...,σn) a pointed stable curve. Write U=X\⋃jσj(S). For every integer k≥0, the invertible sheaf ωX/Sk+1(kσ1+...+kσn) inherits a singular hermitian structure from the hyperbolic metric on the Riemann surface U∞. In this article we define a Quillen type metric ‖∙‖Q on the determinant line λk+1=λ(ωX/Sk+1(kσ1+...+kσn)) and compute the arithmetic degree of (λk+1,‖∙‖Q) by means of an analogue of the Riemann–Roch theorem in Arakelov geometry. As a byproduct, we obtain an arithmetic Hilbert–Samuel formula: the arithmetic degree of (λk+1,‖∙‖L2) admits an asymptotic expansion in k, whose leading coefficient is given by the arithmetic self-intersection of (ωX/S(σ1+...+σn),‖∙‖hyp). Here ‖∙‖L2 and ‖∙‖hyp denote the L2 metric and the dual of the hyperbolic metric, respectively. Examples of application are given for pointed stable curves of genus 0.
Classification :
14-XX, 32-XX, 00-XX
Keywords: Arakelov theory, pointed stable curve, Mumford isomorphism, hyperbolic metric, Quillen metric, Selberg zeta function
Keywords: Arakelov theory, pointed stable curve, Mumford isomorphism, hyperbolic metric, Quillen metric, Selberg zeta function
@article{JEMS_2012_14_2_a0,
author = {Gerard Freixas i Montplet},
title = {An arithmetic {Hilbert{\textendash}Samuel} theorem for pointed stable curves},
journal = {Journal of the European Mathematical Society},
pages = {321--351},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2012},
doi = {10.4171/jems/304},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/304/}
}
TY - JOUR AU - Gerard Freixas i Montplet TI - An arithmetic Hilbert–Samuel theorem for pointed stable curves JO - Journal of the European Mathematical Society PY - 2012 SP - 321 EP - 351 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/304/ DO - 10.4171/jems/304 ID - JEMS_2012_14_2_a0 ER -
%0 Journal Article %A Gerard Freixas i Montplet %T An arithmetic Hilbert–Samuel theorem for pointed stable curves %J Journal of the European Mathematical Society %D 2012 %P 321-351 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/304/ %R 10.4171/jems/304 %F JEMS_2012_14_2_a0
Gerard Freixas i Montplet. An arithmetic Hilbert–Samuel theorem for pointed stable curves. Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 321-351. doi: 10.4171/jems/304
Cité par Sources :