Asymptotic behaviour of numerical invariants of algebraic varieties
Journal of the European Mathematical Society, Tome 14 (2012) no. 1, pp. 255-271
Voir la notice de l'article provenant de la source EMS Press
We show that if the degree of a nonsingular projective variety is high enough, maximization of any of the most important numerical invariants, such as class, Betti number, and any of the Chern or middle Hodge numbers, leads to the same class of extremal varieties. Moreover, asymptotically (say, for varieties whose total Betti number is big enough) the ratio of any two of these invariants tends to a well-defined constant.
Classification :
14-XX, 19-XX, 32-XX, 57-XX
Keywords: Asymptotic bound, Castelnuovo theory, Betti number, Hodge number, Chern number, variety of minimal degree
Keywords: Asymptotic bound, Castelnuovo theory, Betti number, Hodge number, Chern number, variety of minimal degree
@article{JEMS_2012_14_1_a6,
author = {F. L. Zak},
title = {Asymptotic behaviour of numerical invariants of algebraic varieties},
journal = {Journal of the European Mathematical Society},
pages = {255--271},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2012},
doi = {10.4171/jems/301},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/301/}
}
TY - JOUR AU - F. L. Zak TI - Asymptotic behaviour of numerical invariants of algebraic varieties JO - Journal of the European Mathematical Society PY - 2012 SP - 255 EP - 271 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/301/ DO - 10.4171/jems/301 ID - JEMS_2012_14_1_a6 ER -
F. L. Zak. Asymptotic behaviour of numerical invariants of algebraic varieties. Journal of the European Mathematical Society, Tome 14 (2012) no. 1, pp. 255-271. doi: 10.4171/jems/301
Cité par Sources :