Right coideal subalgebras of $U_q^+(\frak{so}_{2n+1})$
Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1677-1735.

Voir la notice de l'article provenant de la source EMS Press

We give a complete classification of right coideal subalgebras that contain all grouplike elements for the quantum group Uq+​(so2n+1​), provided that q is not a root of 1. If q has a finite multiplicative order t>4, this classification remains valid for homogeneous right coideal subalgebras of the small Lusztig quantum group uq+​(so2n+1​). Consequently, we determine that the total number of right coideal subalgebras that contain the coradical equals (2n)!!, the order of the Weyl group defined by the root system of type Bn​.
DOI : 10.4171/jems/291
Classification : 16-XX, 00-XX, 17-XX
Keywords: Coideal subalgebra, Hopf algebra, PBW-basis
@article{JEMS_2011_13_6_a4,
     author = {V. K. Kharchenko},
     title = {Right coideal subalgebras of $U_q^+(\frak{so}_{2n+1})$},
     journal = {Journal of the European Mathematical Society},
     pages = {1677--1735},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2011},
     doi = {10.4171/jems/291},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/291/}
}
TY  - JOUR
AU  - V. K. Kharchenko
TI  - Right coideal subalgebras of $U_q^+(\frak{so}_{2n+1})$
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 1677
EP  - 1735
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/291/
DO  - 10.4171/jems/291
ID  - JEMS_2011_13_6_a4
ER  - 
%0 Journal Article
%A V. K. Kharchenko
%T Right coideal subalgebras of $U_q^+(\frak{so}_{2n+1})$
%J Journal of the European Mathematical Society
%D 2011
%P 1677-1735
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/291/
%R 10.4171/jems/291
%F JEMS_2011_13_6_a4
V. K. Kharchenko. Right coideal subalgebras of $U_q^+(\frak{so}_{2n+1})$. Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1677-1735. doi : 10.4171/jems/291. http://geodesic.mathdoc.fr/articles/10.4171/jems/291/

Cité par Sources :