On a conjecture by Auerbach
Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1633-1676.

Voir la notice de l'article provenant de la source EMS Press

In 1938 Herman Auerbach published a paper where he showed a deep connection between the solutions of the Ulam problem of floating bodies and a class of sets studied by Zindler, which are the planar sets whose bisecting chords all have the same length. In the same paper he conjectured that among Zindler sets the one with minimal area, as well as with maximal perimeter, is the so-called “Auerbach triangle”. We prove this conjecture.
DOI : 10.4171/jems/290
Classification : 49-XX, 00-XX
Keywords: Min-max problems, minimal area, Zindler sets, optimal convex sets
@article{JEMS_2011_13_6_a3,
     author = {Nicola Fusco and Aldo Pratelli},
     title = {On a conjecture by {Auerbach}},
     journal = {Journal of the European Mathematical Society},
     pages = {1633--1676},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2011},
     doi = {10.4171/jems/290},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/290/}
}
TY  - JOUR
AU  - Nicola Fusco
AU  - Aldo Pratelli
TI  - On a conjecture by Auerbach
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 1633
EP  - 1676
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/290/
DO  - 10.4171/jems/290
ID  - JEMS_2011_13_6_a3
ER  - 
%0 Journal Article
%A Nicola Fusco
%A Aldo Pratelli
%T On a conjecture by Auerbach
%J Journal of the European Mathematical Society
%D 2011
%P 1633-1676
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/290/
%R 10.4171/jems/290
%F JEMS_2011_13_6_a3
Nicola Fusco; Aldo Pratelli. On a conjecture by Auerbach. Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1633-1676. doi : 10.4171/jems/290. http://geodesic.mathdoc.fr/articles/10.4171/jems/290/

Cité par Sources :