Essential dimension of moduli of curves and other algebraic stacks
Journal of the European Mathematical Society, Tome 13 (2011) no. 4, pp. 1079-1112
Voir la notice de l'article provenant de la source EMS Press
In this paper we consider questions of the following type. Let k be a base field and K/k be a field extension. Given a geometric object X over a field K (e.g. a smooth curve of genus g) what is the least transcendence degree of a field of definition of X over the base field k? In other words, how many independent parameters are needed to define X? To study these questions we introduce a notion of essential dimension for an algebraic stack. Using the resulting theory, we give a complete answer to the question above when the geometric objects X are smooth, stable or hyperelliptic curves. The appendix, written by Najmuddin Fakhruddin, answers this question in the case of abelian varieties.
Classification :
14-XX, 00-XX
Keywords: Essential dimension, stack, gerbe, moduli of curves, moduli of abelian varieties
Keywords: Essential dimension, stack, gerbe, moduli of curves, moduli of abelian varieties
@article{JEMS_2011_13_4_a8,
author = {Patrick Brosnan and Zinovy Reichstein and Angelo Vistoli},
title = {Essential dimension of moduli of curves and other algebraic stacks},
journal = {Journal of the European Mathematical Society},
pages = {1079--1112},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2011},
doi = {10.4171/jems/276},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/276/}
}
TY - JOUR AU - Patrick Brosnan AU - Zinovy Reichstein AU - Angelo Vistoli TI - Essential dimension of moduli of curves and other algebraic stacks JO - Journal of the European Mathematical Society PY - 2011 SP - 1079 EP - 1112 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/276/ DO - 10.4171/jems/276 ID - JEMS_2011_13_4_a8 ER -
%0 Journal Article %A Patrick Brosnan %A Zinovy Reichstein %A Angelo Vistoli %T Essential dimension of moduli of curves and other algebraic stacks %J Journal of the European Mathematical Society %D 2011 %P 1079-1112 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4171/jems/276/ %R 10.4171/jems/276 %F JEMS_2011_13_4_a8
Patrick Brosnan; Zinovy Reichstein; Angelo Vistoli. Essential dimension of moduli of curves and other algebraic stacks. Journal of the European Mathematical Society, Tome 13 (2011) no. 4, pp. 1079-1112. doi: 10.4171/jems/276
Cité par Sources :