Growth in $\mathrm{SL}_3(ℤ/pℤ)$
Journal of the European Mathematical Society, Tome 13 (2011) no. 3, pp. 761-851.

Voir la notice de l'article provenant de la source EMS Press

Let G=SL3​(Z/pZ), p a prime. Let A be a set of generators of G. Then A grows under the group operation.
DOI : 10.4171/jems/267
Classification : 20-XX, 00-XX, 05-XX, 11-XX
Keywords: Cayley graphs, finite groups, generation, diameter, expander graphs
@article{JEMS_2011_13_3_a7,
     author = {Harald Andr\'es Helfgott},
     title = {Growth in $\mathrm{SL}_3(\ensuremath{\mathbb{Z}}/p\ensuremath{\mathbb{Z}})$},
     journal = {Journal of the European Mathematical Society},
     pages = {761--851},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2011},
     doi = {10.4171/jems/267},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/267/}
}
TY  - JOUR
AU  - Harald Andrés Helfgott
TI  - Growth in $\mathrm{SL}_3(ℤ/pℤ)$
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 761
EP  - 851
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/267/
DO  - 10.4171/jems/267
ID  - JEMS_2011_13_3_a7
ER  - 
%0 Journal Article
%A Harald Andrés Helfgott
%T Growth in $\mathrm{SL}_3(ℤ/pℤ)$
%J Journal of the European Mathematical Society
%D 2011
%P 761-851
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/267/
%R 10.4171/jems/267
%F JEMS_2011_13_3_a7
Harald Andrés Helfgott. Growth in $\mathrm{SL}_3(ℤ/pℤ)$. Journal of the European Mathematical Society, Tome 13 (2011) no. 3, pp. 761-851. doi : 10.4171/jems/267. http://geodesic.mathdoc.fr/articles/10.4171/jems/267/

Cité par Sources :