Differences of random Cantor sets and lower spectral radii
Journal of the European Mathematical Society, Tome 13 (2011) no. 3, pp. 733-760.

Voir la notice de l'article provenant de la source EMS Press

We investigate the question under which conditions the algebraic difference between two independent random Cantor sets C1​ and C2​ almost surely contains an interval, and when not. The natural condition is whether the sum d1​+d2​ of the Hausdorff dimensions of the sets is smaller (no interval) or larger (an interval) than 1. Palis conjectured that generically it should be true that d1​+d2​>1 should imply that C1​−C2​ contains an interval. We prove that for 2-adic random Cantor sets generated by a vector of probabilities (p0​,p1​) the interior of the region where the Palis conjecture does not hold is given by those p0​,p1​ which satisfy p0​+p1​>√2 and p0​p1​(1+p02​+p12​)1. We furthermore prove a general result which characterizes the interval/no interval property in terms of the lower spectral radius of a set of 2×2 matrices.
DOI : 10.4171/jems/266
Classification : 28-XX, 60-XX, 00-XX
Keywords: Random fractals, difference of Cantor sets, Palis conjecture, multitype branching processes in varying environment, lower spectral radius
@article{JEMS_2011_13_3_a6,
     author = {F. Michel Dekking and Bram Kuijvenhoven},
     title = {Differences of random {Cantor} sets and lower spectral radii},
     journal = {Journal of the European Mathematical Society},
     pages = {733--760},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2011},
     doi = {10.4171/jems/266},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/266/}
}
TY  - JOUR
AU  - F. Michel Dekking
AU  - Bram Kuijvenhoven
TI  - Differences of random Cantor sets and lower spectral radii
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 733
EP  - 760
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/266/
DO  - 10.4171/jems/266
ID  - JEMS_2011_13_3_a6
ER  - 
%0 Journal Article
%A F. Michel Dekking
%A Bram Kuijvenhoven
%T Differences of random Cantor sets and lower spectral radii
%J Journal of the European Mathematical Society
%D 2011
%P 733-760
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/266/
%R 10.4171/jems/266
%F JEMS_2011_13_3_a6
F. Michel Dekking; Bram Kuijvenhoven. Differences of random Cantor sets and lower spectral radii. Journal of the European Mathematical Society, Tome 13 (2011) no. 3, pp. 733-760. doi : 10.4171/jems/266. http://geodesic.mathdoc.fr/articles/10.4171/jems/266/

Cité par Sources :