Hermitian curvature flow
Journal of the European Mathematical Society, Tome 13 (2011) no. 3, pp. 601-634.

Voir la notice de l'article provenant de la source EMS Press

We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein metrics with negative or zero first Chern class.
DOI : 10.4171/jems/262
Classification : 00-XX
@article{JEMS_2011_13_3_a2,
     author = {Jeffrey Streets and Gang Tian},
     title = {Hermitian curvature flow},
     journal = {Journal of the European Mathematical Society},
     pages = {601--634},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2011},
     doi = {10.4171/jems/262},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/262/}
}
TY  - JOUR
AU  - Jeffrey Streets
AU  - Gang Tian
TI  - Hermitian curvature flow
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 601
EP  - 634
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/262/
DO  - 10.4171/jems/262
ID  - JEMS_2011_13_3_a2
ER  - 
%0 Journal Article
%A Jeffrey Streets
%A Gang Tian
%T Hermitian curvature flow
%J Journal of the European Mathematical Society
%D 2011
%P 601-634
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/262/
%R 10.4171/jems/262
%F JEMS_2011_13_3_a2
Jeffrey Streets; Gang Tian. Hermitian curvature flow. Journal of the European Mathematical Society, Tome 13 (2011) no. 3, pp. 601-634. doi : 10.4171/jems/262. http://geodesic.mathdoc.fr/articles/10.4171/jems/262/

Cité par Sources :