The speed of propagation for KPP type problems. I: Periodic framework
Journal of the European Mathematical Society, Tome 7 (2005) no. 2, pp. 173-213.

Voir la notice de l'article provenant de la source EMS Press

This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of the domain, of the reaction, advection and diffusion coefficients are given. The last section deals with the notion of asymptotic spreading speed. The main properties of the spreading speed are given. Some of them are based on some new Liouville type results for nonlinear elliptic equations in unbounded domains.
DOI : 10.4171/jems/26
Classification : 35-XX, 00-XX
Keywords: Reaction-diffusion equations, travelling fronts, propagation, periodic media, eigenvalue problems
@article{JEMS_2005_7_2_a1,
     author = {Henri Berestycki and Fran\c{c}ois Hamel and Nikolai Nadirashvili},
     title = {The speed of propagation for {KPP} type problems. {I:} {Periodic} framework},
     journal = {Journal of the European Mathematical Society},
     pages = {173--213},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2005},
     doi = {10.4171/jems/26},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/26/}
}
TY  - JOUR
AU  - Henri Berestycki
AU  - François Hamel
AU  - Nikolai Nadirashvili
TI  - The speed of propagation for KPP type problems. I: Periodic framework
JO  - Journal of the European Mathematical Society
PY  - 2005
SP  - 173
EP  - 213
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/26/
DO  - 10.4171/jems/26
ID  - JEMS_2005_7_2_a1
ER  - 
%0 Journal Article
%A Henri Berestycki
%A François Hamel
%A Nikolai Nadirashvili
%T The speed of propagation for KPP type problems. I: Periodic framework
%J Journal of the European Mathematical Society
%D 2005
%P 173-213
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/26/
%R 10.4171/jems/26
%F JEMS_2005_7_2_a1
Henri Berestycki; François Hamel; Nikolai Nadirashvili. The speed of propagation for KPP type problems. I: Periodic framework. Journal of the European Mathematical Society, Tome 7 (2005) no. 2, pp. 173-213. doi : 10.4171/jems/26. http://geodesic.mathdoc.fr/articles/10.4171/jems/26/

Cité par Sources :