A note on Ricci flow and optimal transportation
Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 249-258.

Voir la notice de l'article provenant de la source EMS Press

We describe a new link between Perelman’s monotonicity formula for the reduced volume and ideas from optimal transport theory.
DOI : 10.4171/jems/251
Classification : 53-XX, 49-XX, 00-XX
Keywords: Ricci flow, reduced volume, optimal transportation
@article{JEMS_2011_13_1_a9,
     author = {Simon Brendle},
     title = {A note on {Ricci} flow and optimal transportation},
     journal = {Journal of the European Mathematical Society},
     pages = {249--258},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4171/jems/251},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/251/}
}
TY  - JOUR
AU  - Simon Brendle
TI  - A note on Ricci flow and optimal transportation
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 249
EP  - 258
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/251/
DO  - 10.4171/jems/251
ID  - JEMS_2011_13_1_a9
ER  - 
%0 Journal Article
%A Simon Brendle
%T A note on Ricci flow and optimal transportation
%J Journal of the European Mathematical Society
%D 2011
%P 249-258
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/251/
%R 10.4171/jems/251
%F JEMS_2011_13_1_a9
Simon Brendle. A note on Ricci flow and optimal transportation. Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 249-258. doi : 10.4171/jems/251. http://geodesic.mathdoc.fr/articles/10.4171/jems/251/

Cité par Sources :