Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations
Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 219-247.

Voir la notice de l'article provenant de la source EMS Press

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation ut = Δ_u_+|u|p-1_u_. We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.
DOI : 10.4171/jems/250
Classification : 35-XX, 00-XX
Keywords: Semilinear parabolic equations, Liouville theorems, nodal radial solutions, a priori estimates, blow-up rate, decay rate, periodic solutions
@article{JEMS_2011_13_1_a8,
     author = {Thomas Bartsch and Peter Polacik and Pavol Quittner},
     title = {Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations},
     journal = {Journal of the European Mathematical Society},
     pages = {219--247},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4171/jems/250},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/250/}
}
TY  - JOUR
AU  - Thomas Bartsch
AU  - Peter Polacik
AU  - Pavol Quittner
TI  - Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 219
EP  - 247
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/250/
DO  - 10.4171/jems/250
ID  - JEMS_2011_13_1_a8
ER  - 
%0 Journal Article
%A Thomas Bartsch
%A Peter Polacik
%A Pavol Quittner
%T Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations
%J Journal of the European Mathematical Society
%D 2011
%P 219-247
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/250/
%R 10.4171/jems/250
%F JEMS_2011_13_1_a8
Thomas Bartsch; Peter Polacik; Pavol Quittner. Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations. Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 219-247. doi : 10.4171/jems/250. http://geodesic.mathdoc.fr/articles/10.4171/jems/250/

Cité par Sources :