Kazhdan–Lusztig basis and a geometric filtration of an affine Hecke Algebra, II
Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 207-217.

Voir la notice de l'article provenant de la source EMS Press

An affine Hecke algebras can be realized as an equivariant K-group of the corresponding Steinberg variety. This gives rise naturally to some two-sided ideals of the affine Hecke algebra by means of the closures of nilpotent orbits of the corresponding Lie algebra. In this paper we will show that the two-sided ideals are in fact the two-sided ideals of the affine Hecke algebra defined through two-sided cells of the corresponding affine Weyl group after the two-sided ideals are tensored by Q. This proves a weak form of a conjecture of Ginzburg proposed in 1987.
DOI : 10.4171/jems/249
Classification : 20-XX, 00-XX
Keywords: Affine Hecke algebra, two-sided cell, two-sided ideal
@article{JEMS_2011_13_1_a7,
     author = {Nanhua Xi},
     title = {Kazhdan{\textendash}Lusztig basis and a geometric filtration of an affine {Hecke} {Algebra,} {II}},
     journal = {Journal of the European Mathematical Society},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4171/jems/249},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/249/}
}
TY  - JOUR
AU  - Nanhua Xi
TI  - Kazhdan–Lusztig basis and a geometric filtration of an affine Hecke Algebra, II
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 207
EP  - 217
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/249/
DO  - 10.4171/jems/249
ID  - JEMS_2011_13_1_a7
ER  - 
%0 Journal Article
%A Nanhua Xi
%T Kazhdan–Lusztig basis and a geometric filtration of an affine Hecke Algebra, II
%J Journal of the European Mathematical Society
%D 2011
%P 207-217
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/249/
%R 10.4171/jems/249
%F JEMS_2011_13_1_a7
Nanhua Xi. Kazhdan–Lusztig basis and a geometric filtration of an affine Hecke Algebra, II. Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 207-217. doi : 10.4171/jems/249. http://geodesic.mathdoc.fr/articles/10.4171/jems/249/

Cité par Sources :