Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces
Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 57-84.

Voir la notice de l'article provenant de la source EMS Press

We prove the conjectures of Graham–Kumar [GrKu08] and Griffeth–Ram [GrRa04] concerning the alternation of signs in the structure constants for torus-equivariant K-theory of generalized flag varieties G/P. These results are immediate consequences of an equivariant homological Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and their subvarieties, under a natural group action with finitely many orbits. The computation of the coefficients in the expansion of the equivariant K-class of a subvariety in terms of Schubert classes is reduced to an Euler characteristic using the homological transversality theorem for non-transitive group actions due to S. Sierra. A vanishing theorem, when the subvariety has rational singularities, shows that the Euler characteristic is a sum of at most one term—the top one—with a well-defined sign. The vanishing is proved by suitably modifying a geometric argument due to M. Brion in ordinary K-theory that brings Kawamata–Viehweg vanishing to bear.
DOI : 10.4171/jems/244
Classification : 19-XX, 00-XX
Keywords: Flag variety, equivariant K-theory, Kleiman transversality, homological transversality, Schubert variety, Borel mixing space, rational singularities, Bott–Samelson resolution
@article{JEMS_2011_13_1_a2,
     author = {Dave Anderson and Stephen Griffeth and Ezra Miller},
     title = {Positivity and {Kleiman} transversality in equivariant $K$-theory of homogeneous spaces},
     journal = {Journal of the European Mathematical Society},
     pages = {57--84},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4171/jems/244},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/244/}
}
TY  - JOUR
AU  - Dave Anderson
AU  - Stephen Griffeth
AU  - Ezra Miller
TI  - Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 57
EP  - 84
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/244/
DO  - 10.4171/jems/244
ID  - JEMS_2011_13_1_a2
ER  - 
%0 Journal Article
%A Dave Anderson
%A Stephen Griffeth
%A Ezra Miller
%T Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces
%J Journal of the European Mathematical Society
%D 2011
%P 57-84
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/244/
%R 10.4171/jems/244
%F JEMS_2011_13_1_a2
Dave Anderson; Stephen Griffeth; Ezra Miller. Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces. Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 57-84. doi : 10.4171/jems/244. http://geodesic.mathdoc.fr/articles/10.4171/jems/244/

Cité par Sources :