Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces
Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 57-84
Cet article a éte moissonné depuis la source EMS Press
We prove the conjectures of Graham–Kumar [GrKu08] and Griffeth–Ram [GrRa04] concerning the alternation of signs in the structure constants for torus-equivariant K-theory of generalized flag varieties G/P. These results are immediate consequences of an equivariant homological Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and their subvarieties, under a natural group action with finitely many orbits. The computation of the coefficients in the expansion of the equivariant K-class of a subvariety in terms of Schubert classes is reduced to an Euler characteristic using the homological transversality theorem for non-transitive group actions due to S. Sierra. A vanishing theorem, when the subvariety has rational singularities, shows that the Euler characteristic is a sum of at most one term—the top one—with a well-defined sign. The vanishing is proved by suitably modifying a geometric argument due to M. Brion in ordinary K-theory that brings Kawamata–Viehweg vanishing to bear.
Classification :
19-XX, 00-XX
Keywords: Flag variety, equivariant K-theory, Kleiman transversality, homological transversality, Schubert variety, Borel mixing space, rational singularities, Bott–Samelson resolution
Keywords: Flag variety, equivariant K-theory, Kleiman transversality, homological transversality, Schubert variety, Borel mixing space, rational singularities, Bott–Samelson resolution
@article{JEMS_2011_13_1_a2,
author = {Dave Anderson and Stephen Griffeth and Ezra Miller},
title = {Positivity and {Kleiman} transversality in equivariant $K$-theory of homogeneous spaces},
journal = {Journal of the European Mathematical Society},
pages = {57--84},
year = {2011},
volume = {13},
number = {1},
doi = {10.4171/jems/244},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/244/}
}
TY - JOUR AU - Dave Anderson AU - Stephen Griffeth AU - Ezra Miller TI - Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces JO - Journal of the European Mathematical Society PY - 2011 SP - 57 EP - 84 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/244/ DO - 10.4171/jems/244 ID - JEMS_2011_13_1_a2 ER -
%0 Journal Article %A Dave Anderson %A Stephen Griffeth %A Ezra Miller %T Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces %J Journal of the European Mathematical Society %D 2011 %P 57-84 %V 13 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/244/ %R 10.4171/jems/244 %F JEMS_2011_13_1_a2
Dave Anderson; Stephen Griffeth; Ezra Miller. Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces. Journal of the European Mathematical Society, Tome 13 (2011) no. 1, pp. 57-84. doi: 10.4171/jems/244
Cité par Sources :