Bubbling along boundary geodesics near the second critical exponent
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1553-1605
Cet article a éte moissonné depuis la source EMS Press
The role of the second critical exponent p=(n+1)/(n−3), the Sobolev critical exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem Δu+up=0, u>0 under zero Dirichlet boundary conditions, in a domain Ω in Rn with bounded, smooth boundary. Given Γ, a geodesic of the boundary with negative inner normal curvature we find that for p=(n+1)/(n−3)−ε, there exists a solution uε such that ∣∇uε∣2 converges weakly to a Dirac measure on Γ as ε→0+ exists, provided that Γ is non-degenerate in the sense of second variations of length and ε remains away from certain explicit discrete set of values for which a resonance phenomenon takes place.
Classification :
32-XX, 35-XX, 00-XX
Keywords: Critical Sobolev exponent, blowing-up solution, non degenerate geodesic
Keywords: Critical Sobolev exponent, blowing-up solution, non degenerate geodesic
@article{JEMS_2010_12_6_a9,
author = {Manuel del Pino and Monica Musso and Frank Pacard},
title = {Bubbling along boundary geodesics near the second critical exponent},
journal = {Journal of the European Mathematical Society},
pages = {1553--1605},
year = {2010},
volume = {12},
number = {6},
doi = {10.4171/jems/241},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/241/}
}
TY - JOUR AU - Manuel del Pino AU - Monica Musso AU - Frank Pacard TI - Bubbling along boundary geodesics near the second critical exponent JO - Journal of the European Mathematical Society PY - 2010 SP - 1553 EP - 1605 VL - 12 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/241/ DO - 10.4171/jems/241 ID - JEMS_2010_12_6_a9 ER -
%0 Journal Article %A Manuel del Pino %A Monica Musso %A Frank Pacard %T Bubbling along boundary geodesics near the second critical exponent %J Journal of the European Mathematical Society %D 2010 %P 1553-1605 %V 12 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/241/ %R 10.4171/jems/241 %F JEMS_2010_12_6_a9
Manuel del Pino; Monica Musso; Frank Pacard. Bubbling along boundary geodesics near the second critical exponent. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1553-1605. doi: 10.4171/jems/241
Cité par Sources :