Bubbling along boundary geodesics near the second critical exponent
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1553-1605.

Voir la notice de l'article provenant de la source EMS Press

The role of the second critical exponent p=(n+1)/(n−3), the Sobolev critical exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem Δu+up=0, u>0 under zero Dirichlet boundary conditions, in a domain Ω in Rn with bounded, smooth boundary. Given Γ, a geodesic of the boundary with negative inner normal curvature we find that for p=(n+1)/(n−3)−ε, there exists a solution uε​ such that ∣∇uε​∣2 converges weakly to a Dirac measure on Γ as ε→0+ exists, provided that Γ is non-degenerate in the sense of second variations of length and ε remains away from certain explicit discrete set of values for which a resonance phenomenon takes place.
DOI : 10.4171/jems/241
Classification : 32-XX, 35-XX, 00-XX
Keywords: Critical Sobolev exponent, blowing-up solution, non degenerate geodesic
@article{JEMS_2010_12_6_a9,
     author = {Manuel del Pino and Monica Musso and Frank Pacard},
     title = {Bubbling along boundary geodesics near the second critical exponent},
     journal = {Journal of the European Mathematical Society},
     pages = {1553--1605},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2010},
     doi = {10.4171/jems/241},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/241/}
}
TY  - JOUR
AU  - Manuel del Pino
AU  - Monica Musso
AU  - Frank Pacard
TI  - Bubbling along boundary geodesics near the second critical exponent
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1553
EP  - 1605
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/241/
DO  - 10.4171/jems/241
ID  - JEMS_2010_12_6_a9
ER  - 
%0 Journal Article
%A Manuel del Pino
%A Monica Musso
%A Frank Pacard
%T Bubbling along boundary geodesics near the second critical exponent
%J Journal of the European Mathematical Society
%D 2010
%P 1553-1605
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/241/
%R 10.4171/jems/241
%F JEMS_2010_12_6_a9
Manuel del Pino; Monica Musso; Frank Pacard. Bubbling along boundary geodesics near the second critical exponent. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1553-1605. doi : 10.4171/jems/241. http://geodesic.mathdoc.fr/articles/10.4171/jems/241/

Cité par Sources :